211 research outputs found
How Gaussian competition leads to lumpy or uniform species distributions
A central model in theoretical ecology considers the competition of a range
of species for a broad spectrum of resources. Recent studies have shown that
essentially two different outcomes are possible. Either the species surviving
competition are more or less uniformly distributed over the resource spectrum,
or their distribution is 'lumped' (or 'clumped'), consisting of clusters of
species with similar resource use that are separated by gaps in resource space.
Which of these outcomes will occur crucially depends on the competition kernel,
which reflects the shape of the resource utilization pattern of the competing
species. Most models considered in the literature assume a Gaussian competition
kernel. This is unfortunate, since predictions based on such a Gaussian
assumption are not robust. In fact, Gaussian kernels are a border case
scenario, and slight deviations from this function can lead to either uniform
or lumped species distributions. Here we illustrate the non-robustness of the
Gaussian assumption by simulating different implementations of the standard
competition model with constant carrying capacity. In this scenario, lumped
species distributions can come about by secondary ecological or evolutionary
mechanisms or by details of the numerical implementation of the model. We
analyze the origin of this sensitivity and discuss it in the context of recent
applications of the model.Comment: 11 pages, 3 figures, revised versio
Li4-xGe1-xPxO4 a potential solid-state electrolyte for all-oxide microbatteries
Solid-state electrolytes for Li-ion batteries are attracting growing interest
as they allow building safer batteries, also using lithium metal anodes. Here
we studied a compound in the lithium superionic conductor (LISICON) family,
i.e. Li4-xGe1-xPxO4 (LGPO). Thin films were deposited via pulsed laser
deposition and their electrical properties were compared with ceramic pellets.
A detailed characterization of the micro structure shows that thin films can be
deposited fully crystalline at higher temperatures but also partially amorphous
at room temperature. The conductivity is not strongly influenced by the
presence of grain boundaries, exposure to air or lithium deficiencies.
First-principles molecular dynamics simulations were employed to calculate the
lithium ion diffusion profile and the conductivity at various temperatures of
the ideal LGPO crystal. Simulations gives the upper limit of conductivity for a
defect free crystal, which is in the range of 10-2 S cm-1 at 300 deg. The ease
of thin film fabrication, the room-temperature Li-ion conductivity in the range
of a few microS cm-1 make LGPO a very appealing electrolyte material for thin
film all-solid-state all-oxide microbatteries
Disordered Environments in Spatial Games
The Prisoner's dilemma is the main game theoretical framework in which the
onset and maintainance of cooperation in biological populations is studied. In
the spatial version of the model, we study the robustness of cooperation in
heterogeneous ecosystems in spatial evolutionary games by considering site
diluted lattices. The main result is that due to disorder, the fraction of
cooperators in the population is enhanced. Moreover, the system presents a
dynamical transition at , separating a region with spatial chaos from
one with localized, stable groups of cooperators.Comment: 6 pages, 5 figure
Benevolent characteristics promote cooperative behaviour among humans
Cooperation is fundamental to the evolution of human society. We regularly
observe cooperative behaviour in everyday life and in controlled experiments
with anonymous people, even though standard economic models predict that they
should deviate from the collective interest and act so as to maximise their own
individual payoff. However, there is typically heterogeneity across subjects:
some may cooperate, while others may not. Since individual factors promoting
cooperation could be used by institutions to indirectly prime cooperation, this
heterogeneity raises the important question of who these cooperators are. We
have conducted a series of experiments to study whether benevolence, defined as
a unilateral act of paying a cost to increase the welfare of someone else
beyond one's own, is related to cooperation in a subsequent one-shot anonymous
Prisoner's dilemma. Contrary to the predictions of the widely used inequity
aversion models, we find that benevolence does exist and a large majority of
people behave this way. We also find benevolence to be correlated with
cooperative behaviour. Finally, we show a causal link between benevolence and
cooperation: priming people to think positively about benevolent behaviour
makes them significantly more cooperative than priming them to think
malevolently. Thus benevolent people exist and cooperate more
Resolution of the stochastic strategy spatial prisoner's dilemma by means of particle swarm optimization
We study the evolution of cooperation among selfish individuals in the
stochastic strategy spatial prisoner's dilemma game. We equip players with the
particle swarm optimization technique, and find that it may lead to highly
cooperative states even if the temptations to defect are strong. The concept of
particle swarm optimization was originally introduced within a simple model of
social dynamics that can describe the formation of a swarm, i.e., analogous to
a swarm of bees searching for a food source. Essentially, particle swarm
optimization foresees changes in the velocity profile of each player, such that
the best locations are targeted and eventually occupied. In our case, each
player keeps track of the highest payoff attained within a local topological
neighborhood and its individual highest payoff. Thus, players make use of their
own memory that keeps score of the most profitable strategy in previous
actions, as well as use of the knowledge gained by the swarm as a whole, to
find the best available strategy for themselves and the society. Following
extensive simulations of this setup, we find a significant increase in the
level of cooperation for a wide range of parameters, and also a full resolution
of the prisoner's dilemma. We also demonstrate extreme efficiency of the
optimization algorithm when dealing with environments that strongly favor the
proliferation of defection, which in turn suggests that swarming could be an
important phenomenon by means of which cooperation can be sustained even under
highly unfavorable conditions. We thus present an alternative way of
understanding the evolution of cooperative behavior and its ubiquitous presence
in nature, and we hope that this study will be inspirational for future efforts
aimed in this direction.Comment: 12 pages, 4 figures; accepted for publication in PLoS ON
Predicting evolution and visualizing high-dimensional fitness landscapes
The tempo and mode of an adaptive process is strongly determined by the
structure of the fitness landscape that underlies it. In order to be able to
predict evolutionary outcomes (even on the short term), we must know more about
the nature of realistic fitness landscapes than we do today. For example, in
order to know whether evolution is predominantly taking paths that move upwards
in fitness and along neutral ridges, or else entails a significant number of
valley crossings, we need to be able to visualize these landscapes: we must
determine whether there are peaks in the landscape, where these peaks are
located with respect to one another, and whether evolutionary paths can connect
them. This is a difficult task because genetic fitness landscapes (as opposed
to those based on traits) are high-dimensional, and tools for visualizing such
landscapes are lacking. In this contribution, we focus on the predictability of
evolution on rugged genetic fitness landscapes, and determine that peaks in
such landscapes are highly clustered: high peaks are predominantly close to
other high peaks. As a consequence, the valleys separating such peaks are
shallow and narrow, such that evolutionary trajectories towards the highest
peak in the landscape can be achieved via a series of valley crossingsComment: 12 pages, 7 figures. To appear in "Recent Advances in the Theory and
Application of Fitness Landscapes" (A. Engelbrecht and H. Richter, eds.).
Springer Series in Emergence, Complexity, and Computation, 201
If players are sparse social dilemmas are too: Importance of percolation for evolution of cooperation
Spatial reciprocity is a well known tour de force of cooperation promotion. A
thorough understanding of the effects of different population densities is
therefore crucial. Here we study the evolution of cooperation in social
dilemmas on different interaction graphs with a certain fraction of vacant
nodes. We find that sparsity may favor the resolution of social dilemmas,
especially if the population density is close to the percolation threshold of
the underlying graph. Regardless of the type of the governing social dilemma as
well as particularities of the interaction graph, we show that under pairwise
imitation the percolation threshold is a universal indicator of how dense the
occupancy ought to be for cooperation to be optimally promoted. We also
demonstrate that myopic updating, due to the lack of efficient spread of
information via imitation, renders the reported mechanism dysfunctional, which
in turn further strengthens its foundations.Comment: 6 two-column pages, 5 figures; accepted for publication in Scientific
Reports [related work available at http://arxiv.org/abs/1205.0541
Live to cheat another day: bacterial dormancy facilitates the social exploitation of beta-lactamases
The breakdown of antibiotics by β-lactamases may be cooperative, since resistant cells can detoxify their environment and facilitate the growth of susceptible neighbours. However, previous studies of this phenomenon have used artificial bacterial vectors or engineered bacteria to increase the secretion of β-lactamases from cells. Here, we investigated whether a broad-spectrum β-lactamase gene carried by a naturally occurring plasmid (pCT) is cooperative under a range of conditions. In ordinary batch culture on solid media, there was little or no evidence that resistant bacteria could protect susceptible cells from ampicillin, although resistant colonies could locally detoxify this growth medium. However, when susceptible cells were inoculated at high densities, late-appearing phenotypically susceptible bacteria grew in the vicinity of resistant colonies. We infer that persisters, cells that have survived antibiotics by undergoing a period of dormancy, founded these satellite colonies. The number of persister colonies was positively correlated with the density of resistant colonies and increased as antibiotic concentrations decreased. We argue that detoxification can be cooperative under a limited range of conditions: if the toxins are bacteriostatic rather than bacteridical; or if susceptible cells invade communities after resistant bacteria; or if dormancy allows susceptible cells to avoid bactericides. Resistance and tolerance were previously thought to be independent solutions for surviving antibiotics. Here, we show that these are interacting strategies: the presence of bacteria adopting one solution can have substantial effects on the fitness of their neighbours
Selection for Replicases in Protocells
PMCID: PMC3649988This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Adaptive Evolution of Cooperation through Darwinian Dynamics in Public Goods Games
The linear or threshold Public Goods game (PGG) is extensively accepted as a paradigmatic model to approach the evolution of cooperation in social dilemmas. Here we explore the significant effect of nonlinearity of the structures of public goods on the evolution of cooperation within the well-mixed population by adopting Darwinian dynamics, which simultaneously consider the evolution of populations and strategies on a continuous adaptive landscape, and extend the concept of evolutionarily stable strategy (ESS) as a coalition of strategies that is both convergent-stable and resistant to invasion. Results show (i) that in the linear PGG contributing nothing is an ESS, which contradicts experimental data, (ii) that in the threshold PGG contributing the threshold value is a fragile ESS, which cannot resist the invasion of contributing nothing, and (iii) that there exists a robust ESS of contributing more than half in the sigmoid PGG if the return rate is relatively high. This work reveals the significant effect of the nonlinearity of the structures of public goods on the evolution of cooperation, and suggests that, compared with the linear or threshold PGG, the sigmoid PGG might be a more proper model for the evolution of cooperation within the well-mixed population
- …