1,366 research outputs found

    Characterization of the Extraterrestrial Magnesium Source in the Atmosphere Using a Meteoric Ablation Simulator

    Get PDF
    Ablation of Mg from meteoroids entering the Earth's atmosphere was studied experimentally using a Meteoric Ablation Simulator: micron‐sized particles of representative meteoritic material were flash heated to simulate atmospheric entry and the ablation rate of Mg with respect to Na measured by fast time‐resolved laser‐induced fluorescence. Over the range of particle diameters and entry velocities studied, Mg ablates 4.3 ± 2.1 times less efficiently than Na and 2.4 ± 0.8 times less efficiently than Fe. The resulting evaporation profiles indicate that Mg mostly ablates around 84 km in the atmosphere, compared with Fe at 88 km and Na at 95 km. The chemical ablation model Chemical Ablation Model predicts satisfactorily the measured peak ablation altitudes and relative ablated fractions of Mg, Na, Fe, and Ca but does not capture the breadth of the ablation profiles, probably due to the inhomogeneity of the minerals present in meteoroids combined with experimental limitations

    Reading faces: differential lateral gaze bias in processing canine and human facial expressions in dogs and 4-year-old children

    Get PDF
    Sensitivity to the emotions of others provides clear biological advantages. However, in the case of heterospecific relationships, such as that existing between dogs and humans, there are additional challenges since some elements of the expression of emotions are species-specific. Given that faces provide important visual cues for communicating emotional state in both humans and dogs, and that processing of emotions is subject to brain lateralisation, we investigated lateral gaze bias in adult dogs when presented with pictures of expressive human and dog faces. Our analysis revealed clear differences in laterality of eye movements in dogs towards conspecific faces according to the emotional valence of the expressions. Differences were also found towards human faces, but to a lesser extent. For comparative purpose, a similar experiment was also run with 4-year-old children and it was observed that they showed differential processing of facial expressions compared to dogs, suggesting a species-dependent engagement of the right or left hemisphere in processing emotions

    Familiar and unfamiliar face recognition in crested macaques (Macaca nigra).

    Get PDF
    Many species use facial features to identify conspecifics, which is necessary to navigate a complex social environment. The fundamental mechanisms underlying face processing are starting to be well understood in a variety of primate species. However, most studies focus on a limited subset of species tested with unfamiliar faces. As well as limiting our understanding of how widely distributed across species these skills are, this also limits our understanding of how primates process faces of individuals they know, and whether social factors (e.g. dominance and social bonds) influence how readily they recognize others. In this study, socially housed crested macaques voluntarily participated in a series of computerized matching-to-sample tasks investigating their ability to discriminate (i) unfamiliar individuals and (ii) members of their own social group. The macaques performed above chance on all tasks. Familiar faces were not easier to discriminate than unfamiliar faces. However, the subjects were better at discriminating higher ranking familiar individuals, but not unfamiliar ones. This suggests that our subjects applied their knowledge of their dominance hierarchies to the pictorial representation of their group mates. Faces of high-ranking individuals garner more social attention, and therefore might be more deeply encoded than other individuals. Our results extend the study of face recognition to a novel species, and consequently provide valuable data for future comparative studies

    Crystal, Solution and In silico Structural Studies of Dihydrodipicolinate Synthase from the Common Grapevine

    Get PDF
    Dihydrodipicolinate synthase (DHDPS) catalyzes the rate limiting step in lysine biosynthesis in bacteria and plants. The structure of DHDPS has been determined from several bacterial species and shown in most cases to form a homotetramer or dimer of dimers. However, only one plant DHDPS structure has been determined to date from the wild tobacco species, Nicotiana sylvestris (Blickling et al. (1997) J. Mol. Biol. 274, 608–621). Whilst N. sylvestris DHDPS also forms a homotetramer, the plant enzyme adopts a ‘back-to-back’ dimer of dimers compared to the ‘head-to-head’ architecture observed for bacterial DHDPS tetramers. This raises the question of whether the alternative quaternary architecture observed for N. sylvestris DHDPS is common to all plant DHDPS enzymes. Here, we describe the structure of DHDPS from the grapevine plant, Vitis vinifera, and show using analytical ultracentrifugation, small-angle X-ray scattering and X-ray crystallography that V. vinifera DHDPS forms a ‘back-to-back’ homotetramer, consistent with N. sylvestris DHDPS. This study is the first to demonstrate using both crystal and solution state measurements that DHDPS from the grapevine plant adopts an alternative tetrameric architecture to the bacterial form, which is important for optimizing protein dynamics as suggested by molecular dynamics simulations reported in this study

    A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry

    Get PDF
    We present here a review of the fundamental topics of Hartree-Fock theory in Quantum Chemistry. From the molecular Hamiltonian, using and discussing the Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock equations for the electronic problem. Special emphasis is placed in the most relevant mathematical aspects of the theoretical derivation of the final equations, as well as in the results regarding the existence and uniqueness of their solutions. All Hartree-Fock versions with different spin restrictions are systematically extracted from the general case, thus providing a unifying framework. Then, the discretization of the one-electron orbitals space is reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition of the basic underlying concepts related to the construction and selection of Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we close the review with a section in which the most relevant modern developments (specially those related to the design of linear-scaling methods) are commented and linked to the issues discussed. The whole work is intentionally introductory and rather self-contained, so that it may be useful for non experts that aim to use quantum chemical methods in interdisciplinary applications. Moreover, much material that is found scattered in the literature has been put together here to facilitate comprehension and to serve as a handy reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and subeqn package

    Ecological and Behavioural Correlates of Intracellular Buffering Capacity in the Muscles of Antarctic Fishes

    Get PDF
    Five species of antarctic fishes can be arranged in order of increasing anaerobic capacity of the white muscles for burst swimming: Rhigophila dearborni (Zoarcidae), icefish (Channichthyidae), Dissostichus mawsoni, Trematomus centronotus, and Pagothenia borchgrevinki (Nototheniidae). This order reflects in-creasing dependence on anaerobic work done during short bursts of speed during prey capture or predator avoidance. Buffer capacity (beta) for white muscle was lower than that of behaviourally equivalent fish from lower latitudes and beta is itself temperature-dependent

    Prediction of peptide and protein propensity for amyloid formation

    Get PDF
    Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of ÎČ-sheet, normalized frequency of ÎČ-sheet from LG, weights for ÎČ-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔGÂș values for peptides extrapolated in 0 M urea). Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation

    MARIS: Method for Analyzing RNA following Intracellular Sorting

    Get PDF
    Transcriptional profiling is a key technique in the study of cell biology that is limited by the availability of reagents to uniquely identify specific cell types and isolate high quality RNA from them. We report a Method for Analyzing RNA following Intracellular Sorting (MARIS) that generates high quality RNA for transcriptome profiling following cellular fixation, intracellular immunofluorescent staining and FACS. MARIS can therefore be used to isolate high quality RNA from many otherwise inaccessible cell types simply based on immunofluorescent tagging of unique intracellular proteins. As proof of principle, we isolate RNA from sorted human embryonic stem cell-derived insulin-expressing cells as well as adult human ÎČ cells. MARIS is a basic molecular biology technique that could be used across several biological disciplines.Howard Hughes Medical InstituteHarvard Stem Cell InstituteNational Institutes of Health (U.S.) (grant 2U01DK07247307)National Institutes of Health (U.S.) (grant RL1DK081184)National Institutes of Health (U.S.) (grant 1U01HL10040804
    • 

    corecore