44 research outputs found

    The impact of atmospheric circulation on the chemistry of the hot Jupiter HD 209458b

    Get PDF
    This is the author accepted manuscript. The final version is available from EDP Sciences via the DOI in this record.We investigate the effects of atmospheric circulation on the chemistry of the hot Jupiter HD 209458b. We use a simplified dynamical model and a robust chemical network, as opposed to previous studies which have used a three dimensional circulation model coupled to a simple chemical kinetics scheme. The temperature structure and distribution of the main atmospheric constituents are calculated in the limit of an atmosphere that rotates as a solid body with an equatorial rotation rate of 1 km/s. Such motion mimics a uniform zonal wind which resembles the equatorial superrotation structure found by three dimensional circulation models. The uneven heating of this tidally locked planet causes, even in the presence of such a strong zonal wind, large temperature contrasts between the dayside and nightside, of up to 800 K. This would result in important longitudinal variations of some molecular abundances if the atmosphere were at chemical equilibrium. The zonal wind, however, acts as a powerful disequilibrium process. We identify the existence of a pressure level of transition between two regimes, which may be located between 100 and 0.1 mbar depending on the molecule. Below this transition layer, chemical equilibrium holds, while above it, the zonal wind tends to homogenize the chemical composition of the atmosphere, bringing molecular abundances in the limb and nightside regions close to chemical equilibrium values characteristic of the dayside, i.e. producing an horizontal quenching effect in the abundances. Reasoning based on timescales arguments indicates that horizontal and vertical mixing are likely to compete in HD 209458b's atmosphere, producing a complex distribution where molecular abundances are quenched horizontally to dayside values and vertically to chemical equilibrium values characteristic of deep layers.M.A., O.V., F.S., and E.H. acknowledge support from the European Research Council (ERC Grant 209622: E3ARTHs). Computer time for this study was provided by the computing facilities MCIA (Mésocentre de Calcul Intensif Aquitain) of the Université de Bordeaux and of the Université de Pau et des Pays de l’Adour. We thank the anonymous referee for a constructive report that helped to improve this manuscript

    Metagenomic ene-reductases for the bioreduction of sterically challenging enones

    Get PDF
    Ene-reductases (ERs) of the Old Yellow Enzyme family catalyse asymmetric reduction of activated alkenes providing chiral products. They have become an important method in the synthetic chemists' toolbox offering a sustainable alternative to metal-catalysed asymmetric reduction. Development of new biocatalytic alkene reduction routes, however needs easy access to novel biocatalysts. A sequence-based functional metagenomic approach was used to identify novel ERs from a drain metagenome. From the ten putative ER enzymes initially identified, eight exhibited activities towards widely accepted mono-cyclic substrates with several of the ERs giving high reaction yields and stereoselectivities. Two highly performing enzymes that displayed excellent co-solvent tolerance were used for the stereoselective reduction of sterically challenging bicyclic enones where the reactions proceeded in high yields, which is unprecedented to date with wild-type ERs. On a preparative enzymatic scale, reductions of Hajos–Parish, Wieland–Miescher derivatives and a tricyclic ketone proceeded with good to excellent yields

    Enzymatic synthesis of chiral amino-alcohols by coupling transketolase and transaminase-catalyzed reactions in a cascading continuous-flow microreactor system

    Get PDF
    Rapid biocatalytic process development and intensification continues to be challenging with currently available methods. Chiral amino-alcohols are of particular interest as they represent key industrial synthons for the production of complex molecules and optically pure pharmaceuticals. (2S,3R)-2-amino-1,3,4-butanetriol (ABT), a building block for the synthesis of protease inhibitors and detoxifying agents, can be synthesized from simple, non-chiral starting materials, by coupling a transketolase- and a transaminase-catalyzed reaction. However, until today, full conversion has not been shown and, typically, long reaction times are reported, making process modifications and improvement challenging. In this contribution, we present a novel microreactor-based approach based on free enzymes, and we report for the first time full conversion of ABT in a coupled enzyme cascade for both batch and continuous-flow systems. Using the compartmentalization of the reactions afforded by the microreactor cascade, we overcame inhibitory effects, increased the activity per unit volume, and optimized individual reaction conditions. The transketolase-catalyzed reaction was completed in under 10 min with a volumetric activity of 3.25 U ml-1 . Following optimization of the transaminase-catalyzed reaction, a volumetric activity of 10.8 U ml-1 was attained which led to full conversion of the coupled reaction in 2 hr. The presented approach illustrates how continuous-flow microreactors can be applied for the design and optimization of biocatalytic processes

    Observation of water vapor in the stratosphere of Jupiter with the Odin Space Telescope.

    Get PDF
    International audienceThe water vapor line at 557 GHz has been observed with the Odin space telescope with a high signal-to-noise ratio and a high spectral resolution on November 8, 2002. The analysis of this observation as well as a re-analysis of previously published observations obtained with the SubmillimeterWavelength Astronomy Satellite seem to favor a cometary origin (Shoemaker-Levy 9) for water in the stratosphere of Jupiter, in agreement with the ISO observation results. Our model predicts that the water line should become fainter and broader from 2007. The observation of such a temporal variablity would be contradictory with an IDP steady flux, thussupporting the SL9 source hypothesis

    Detection of water vapor on Jupiter with the Odin space telescope

    Get PDF
    The Infrared Space Observatory (ISO) has detected water vapor in the stratospheres of the giant planets and Titan and CO2 on Jupiter, Saturn and Neptune (Feuchtgruber et al. 1997, 1999, Lellouch et al. 1999). The presence of the atmospheric cold trap implies an external origin for H2O (interplanetary dust, sputtering from the satellites and /or rings, large meteoritic impacts). The H2O submillimeric line at 557 GHz was detected by the Submillimeter-Wave Astronomy Satellite (SWAS) in 1999 and 2001 (Bergin et al. 2000, Lellouch et al. 2002), but the vertical profile and the column density derived from the observations are different from the one obtained from ISO mesurements (Lellouch et al. 2002).The swedish sub-millimeter satellite Odin carries out a long lasting monitoring of Jupiter's H20 (110-101) 557 GHz line, since its launch in 2001. As an example, the high resolution H2O spectrum obtained on November 8th, 2002, will be presented and discussed here. Spectral analysis combined with the use of our photochemical model (Ollivier et al. 2000, adapted for Jupiter) provides new clues which help understanding the discrepancy between the ISO and SWAS results

    A chemical model for the atmosphere of hot Jupiters

    Get PDF
    Our purpose is to release a chemical network, and the associated rate coefficients, developed for the temperature and pressure range relevant to hot Jupiters atmospheres. Using this network, we study the vertical atmospheric composition of the two hot Jupiters (HD209458b, HD189733b) with a model that includes photolyses and vertical mixing and we produce synthetic spectra. The chemical scheme is derived from applied combustion models that have been methodically validated over a range of temperatures and pressures typical of the atmospheric layers influencing the observations of hot Jupiters. We compare the predictions obtained from this scheme with equilibrium calculations, with different schemes available in the literature that contain N-bearing species and with previously published photochemical models. Compared to other chemical schemes that were not subjected to the same systematic validation, we find significant differences whenever non-equilibrium processes take place. The deviations from the equilibrium, and thus the sensitivity to the network, are more important for HD189733b, as we assume a cooler atmosphere than for HD209458b. We found that the abundances of NH3 and HCN can vary by two orders of magnitude depending on the network, demonstrating the importance of comprehensive experimental validation. A spectral feature of NH3 at 10.5ÎĽ\mum is sensitive to these abundance variations and thus to the chemical scheme. Due to the influence of the kinetics, we recommend the use of a validated scheme to model the chemistry of exoplanet atmospheres. Our network is robust for temperatures within 300-2500K and pressures from 10mbar up to a few hundreds of bars, for species made of C,H,O,N. It is validated for species up to 2 carbon atoms and for the main nitrogen species.Comment: 20 pages, 10 figures. Accepted for publication in Astronomy & Astrophysic

    Science goals and new mission concepts for future exploration of Titan's atmosphere geology and habitability: Titan POlar Scout/orbitEr and In situ lake lander and DrONe explorer (POSEIDON)

    Get PDF
    In response to ESA’s “Voyage 2050” announcement of opportunity, we propose an ambitious L-class mission to explore one of the most exciting bodies in the Solar System, Saturn’s largest moon Titan. Titan, a “world with two oceans”, is an organic-rich body with interior-surface-atmosphere interactions that are comparable in complexity to the Earth. Titan is also one of the few places in the Solar System with habitability potential. Titan’s remarkable nature was only partly revealed by the Cassini-Huygens mission and still holds mysteries requiring a complete exploration using a variety of vehicles and instruments. The proposed mission concept POSEIDON (Titan POlar Scout/orbitEr and In situ lake lander DrONe explorer) would perform joint orbital and in situ investigations of Titan. It is designed to build on and exceed the scope and scientific/technological accomplishments of Cassini-Huygens, exploring Titan in ways that were not previously possible, in particular through full close-up and in situ coverage over long periods of time. In the proposed mission architecture, POSEIDON consists of two major elements: a spacecraft with a large set of instruments that would orbit Titan, preferably in a low-eccentricity polar orbit, and a suite of in situ investigation components, i.e. a lake lander, a “heavy” drone (possibly amphibious) and/or a fleet of mini-drones, dedicated to the exploration of the polar regions. The ideal arrival time at Titan would be slightly before the next northern Spring equinox (2039), as equinoxes are the most active periods to monitor still largely unknown atmospheric and surface seasonal changes. The exploration of Titan’s northern latitudes with an orbiter and in situ element(s) would be highly complementary in terms of timing (with possible mission timing overlap), locations, and science goals with the upcoming NASA New Frontiers Dragonfly mission that will provide in situ exploration of Titan’s equatorial regions, in the mid-2030s

    Impact of circulation winds on the atmospheric chemistry of the hot Jupiter HD 209458b

    No full text
    We investigate the effects of circulation winds on the atmospheric chemistry of the hot Jupiter HD 209458b. We identify the existence of a pressure level of transition between two regimes, whose location depend on each molecule. Below this transition layer, chemical equilibrium holds, while above it, winds tend to homogenize the chemical composition of the atmosphere, bringing molecular abundances in the nightside close to those prevailing in the dayside. We find moderate abundance variations for some molecules such as CO2 between the morning and evening limbs, which would have consequences for transmission spectra that sample the planet's terminator of hot Jupiters
    corecore