34 research outputs found

    Comment on "Control landscapes are almost always trap free: a geometric assessment"

    Full text link
    We analyze a recent claim that almost all closed, finite dimensional quantum systems have trap-free (i.e., free from local optima) landscapes (B. Russell et.al. J. Phys. A: Math. Theor. 50, 205302 (2017)). We point out several errors in the proof which compromise the authors' conclusion. Interested readers are highly encouraged to take a look at the "rebuttal" (see Ref. [1]) of this comment published by the authors of the criticized work. This "rebuttal" is a showcase of the way the erroneous and misleading statements under discussion will be wrapped up and injected in their future works, such as R. L. Kosut et.al, arXiv:1810.04362 [quant-ph] (2018).Comment: 6 pages, 1 figur

    Our private data and the market for third-party providers of functionality to websites

    Get PDF
    Your personal information is out there. You did not give it out, so how did it get there? Internet websites provide visitors with different levels of interaction, ranging from delivering basic information to providing sophisticated features and tools such as profile management, interactive visual communication, and of course, advertising. Like many traditional businesses, websites turn to third-party outsourcing to offer these features and tools. Such services include functionality (password and account control, social media integration, video hosting, chat and forum services, payment services, etc.), performance (backup service, security and firewalls, responsiveness tools, etc.) and targeting/advertising (advertising, lead generation, analytics, etc.)

    Wigner phase space distribution as a wave function

    Full text link
    We demonstrate that the Wigner function of a pure quantum state is a wave function in a specially tuned Dirac bra-ket formalism and argue that the Wigner function is in fact a probability amplitude for the quantum particle to be at a certain point of the classical phase space. Additionally, we establish that in the classical limit, the Wigner function transforms into a classical Koopman-von Neumann wave function rather than into a classical probability distribution. Since probability amplitude need not be positive, our findings provide an alternative outlook on the Wigner function's negativity.Comment: 6 pages and 2 figure

    Cold Solar Flares I. Microwave Domain

    Full text link
    We identify a set of ~100 "cold" solar flares and perform a statistical analysis of them in the microwave range. Cold flares are characterized by a weak thermal response relative to nonthermal emission. This work is a follow up of a previous statistical study of cold flares, which focused on hard X-ray emission to quantify the flare nonthermal component. Here we focus on the microwave emission. The thermal response is represented by the soft X-ray emission measured by the GOES X-ray sensors. We obtain spectral parameters of the flare gyrosynchrotron emission and investigate patterns of the temporal evolution. The main results of the previous statistical study are confirmed: as compared to a "mean" flare, the cold flares have shorter durations, higher spectral peak frequencies, and harder spectral indices above the spectral peak. Nonetheless, there are some cold flares with moderate and low peak frequencies. In a majority of cold flares, we find evidence suggesting the presence of the Razin effect in the microwave spectra, indicative of rather dense flaring loops. We discuss the results in the context of electron acceleration efficiency

    Nuclear astrophysics with radioactive ions at FAIR

    Get PDF
    The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process, β-decay chains. These nuclei are attributed to the p and rp process. For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections. The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes

    Alternative Splicing of Human Telomerase Reverse Transcriptase (hTERT) and Its Implications in Physiological and Pathological Processes

    No full text
    Alternative splicing (AS) of human telomerase catalytic subunit (hTERT, human telomerase reverse transcriptase) pre-mRNA strongly regulates telomerase activity. Several proteins can regulate AS in a cell type-specific manner and determine the functions of cells. In addition to being involved in telomerase activity regulation, AS provides cells with different splice variants that may have alternative biological activities. The modulation of telomerase activity through the induction of hTERT AS is involved in the development of different cancer types and embryos, and the differentiation of stem cells. Regulatory T cells may suppress the proliferation of target human and murine T and B lymphocytes and NK cells in a contact-independent manner involving activation of TERT AS. This review focuses on the mechanism of regulation of hTERT pre-mRNA AS and the involvement of splice variants in physiological and pathological processes

    Adaptation of algorithms for efficient execution on GPUs

    No full text
    We propose a generalized method for adapting and optimizing algorithms for efficient execution on modern graphics processing units (GPU). The method consists of several steps. First, build a control flow graph (CFG) of the algorithm. Next, transform the CFG into a tree of loops and merge non-parallelizable loops into parallelizable ones. Finally, map the resulting loops tree to the tree of GPU computational units, unrolling the algorithm's loops as necessary for the match. The method provides a convenient and robust mental framework and strategy for GPU code optimization. We demonstrate the method by adapting a backtracking search algorithm to the GPU platform and building an optimized implementation of the ResNeXt-50 neural network. Distributed System

    DNA-Based Nanomaterials as Drug Delivery Platforms for Increasing the Effect of Drugs in Tumors

    No full text
    DNA nanotechnology has significantly advanced and might be used in biomedical applications, drug delivery, and cancer treatment during the past few decades. DNA nanomaterials are widely used in biomedical research involving biosensing, bioimaging, and drug delivery since they are remarkably addressable and biocompatible. Gradually, modified nucleic acids have begun to be employed to construct multifunctional DNA nanostructures with a variety of architectural designs. Aptamers are single-stranded nucleic acids (both DNAs and RNAs) capable of self-pairing to acquire secondary structure and of specifically binding with the target. Diagnosis and tumor therapy are prospective fields in which aptamers can be applied. Many DNA nanomaterials with three-dimensional structures have been studied as drug delivery systems for different anticancer medications or gene therapy agents. Different chemical alterations can be employed to construct a wide range of modified DNA nanostructures. Chemically altered DNA-based nanomaterials are useful for drug delivery because of their improved stability and inclusion of functional groups. In this work, the most common oligonucleotide nanomaterials were reviewed as modern drug delivery systems in tumor cells

    DNA-Based Nanomaterials as Drug Delivery Platforms for Increasing the Effect of Drugs in Tumors

    No full text
    DNA nanotechnology has significantly advanced and might be used in biomedical applications, drug delivery, and cancer treatment during the past few decades. DNA nanomaterials are widely used in biomedical research involving biosensing, bioimaging, and drug delivery since they are remarkably addressable and biocompatible. Gradually, modified nucleic acids have begun to be employed to construct multifunctional DNA nanostructures with a variety of architectural designs. Aptamers are single-stranded nucleic acids (both DNAs and RNAs) capable of self-pairing to acquire secondary structure and of specifically binding with the target. Diagnosis and tumor therapy are prospective fields in which aptamers can be applied. Many DNA nanomaterials with three-dimensional structures have been studied as drug delivery systems for different anticancer medications or gene therapy agents. Different chemical alterations can be employed to construct a wide range of modified DNA nanostructures. Chemically altered DNA-based nanomaterials are useful for drug delivery because of their improved stability and inclusion of functional groups. In this work, the most common oligonucleotide nanomaterials were reviewed as modern drug delivery systems in tumor cells
    corecore