213 research outputs found

    Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence

    Get PDF
    Metformin, an oral hypoglycemic agent, has been used for decades to treat type 2 diabetes mellitus. Recent studies indicate that mice treated with metformin live longer and have fewer manifestations of age-related chronic disease. However, the molecular mechanisms underlying this phenotype are unknown. Here, we show that metformin treatment increases the levels of the microRNA-processing protein DICER1 in mice and in humans with diabetes mellitus. Our results indicate that metformin upregulates DICER1 through a post-transcriptional mechanism involving the RNA-binding protein AUF1. Treatment with metformin altered the subcellular localization of AUF1, disrupting its interaction with DICER1 mRNA and rendering DICER1 mRNA stable, allowing DICER1 to accumulate. Consistent with the role of DICER1 in the biogenesis of microRNAs, we found differential patterns of microRNA expression in mice treated with metformin or caloric restriction, two proven life-extending interventions. Interestingly, several microRNAs previously associated with senescence and aging, including miR-20a, miR-34a, miR-130a, miR-106b, miR-125, and let-7c, were found elevated. In agreement with these findings, treatment with metformin decreased cellular senescence in several senescence models in a DICER1- dependent manner. Metformin lowered p16 and p21 protein levels and the abundance of inflammatory cytokines and oncogenes that are hallmarks of the senescence-associated secretory phenotype (SASP). These data lead us to hypothesize that changes in DICER1 levels may be important for organismal aging and to propose that interventions that upregulate DICER1 expression (e.g., metformin) may offer new pharmacotherapeutic approaches for age-related disease

    Risk of Parkinson's disease after tamoxifen treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Women have a reduced risk of developing Parkinson's disease (PD) compared with age-matched men. Neuro-protective effects of estrogen potentially explain this difference. Tamoxifen, commonly used in breast cancer treatment, may interfere with the protective effects of estrogen and increase risk of PD. We compared the rate of PD in Danish breast cancer patients treated with tamoxifen to the rate among those not treated with tamoxifen.</p> <p>Methods</p> <p>A cohort of 15,419 breast cancer patients identified from the Danish Breast Cancer Collaborative Group database was linked to the National Registry of Patients to identify PD diagnoses. Overall risk and rate of PD following identification into the study was compared between patients treated with tamoxifen as adjuvant hormonal therapy and patients not receiving tamoxifen. Time-dependent effects of tamoxifen treatment on PD rate were examined to estimate the likely induction period for tamoxifen.</p> <p>Results</p> <p>In total, 35 cases of PD were identified among the 15,419 breast cancer patients. No overall effect of tamoxifen on rate of PD was observed (HR = 1.3, 95% CI: 0.64-2.5), but a PD hazard ratio of 5.1 (95% CI: 1.0-25) was seen four to six years following initiation of tamoxifen treatment.</p> <p>Conclusions</p> <p>These results provide evidence that the neuro-protective properties of estrogen against PD occurrence may be disrupted by tamoxifen therapy. Tamoxifen treatments may be associated with an increased rate of PD; however these effects act after four years, are of limited duration, and the adverse effect is overwhelmed by the protection against breast recurrence conferred by tamoxifen therapy.</p

    Current trends in drug metabolism and pharmacokinetics.

    Get PDF
    Pharmacokinetics (PK) is the study of the absorption, distribution, metabolism, and excretion (ADME) processes of a drug. Understanding PK properties is essential for drug development and precision medication. In this review we provided an overview of recent research on PK with focus on the following aspects: (1) an update on drug-metabolizing enzymes and transporters in the determination of PK, as well as advances in xenobiotic receptors and noncoding RNAs (ncRNAs) in the modulation of PK, providing new understanding of the transcriptional and posttranscriptional regulatory mechanisms that result in inter-individual variations in pharmacotherapy; (2) current status and trends in assessing drug-drug interactions, especially interactions between drugs and herbs, between drugs and therapeutic biologics, and microbiota-mediated interactions; (3) advances in understanding the effects of diseases on PK, particularly changes in metabolizing enzymes and transporters with disease progression; (4) trends in mathematical modeling including physiologically-based PK modeling and novel animal models such as CRISPR/Cas9-based animal models for DMPK studies; (5) emerging non-classical xenobiotic metabolic pathways and the involvement of novel metabolic enzymes, especially non-P450s. Existing challenges and perspectives on future directions are discussed, and may stimulate the development of new research models, technologies, and strategies towards the development of better drugs and improved clinical practice

    Nongenomic mechanisms of physiological estrogen-mediated dopamine efflux

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neurological diseases and neuropsychiatric disorders that vary depending on female life stages suggest that sex hormones may influence the function of neurotransmitter regulatory machinery such as the dopamine transporter (DAT).</p> <p>Results</p> <p>In this study we tested the rapid nongenomic effects of several physiological estrogens [estradiol (E<sub>2</sub>), estrone (E<sub>1</sub>), and estriol (E<sub>3</sub>)] on dopamine efflux via the DAT in a non-transfected, NGF-differentiated, rat pheochromocytoma (PC12) cell model that expresses membrane estrogen receptors (ERs) α, β, and GPR30. We examined kinase, ionic, and physical interaction mechanisms involved in estrogenic regulation of the DAT function. E<sub>2</sub>-mediated dopamine efflux is DAT-specific and not dependent on extracellular Ca<sup>2+</sup>-mediated exocytotic release from vesicular monoamine transporter vesicles (VMATs). Using kinase inhibitors we also showed that E<sub>2</sub>-mediated dopamine efflux is dependent on protein kinase C and MEK activation, but not on PI3K or protein kinase A. In plasma membrane there are ligand-independent associations of ERα and ERβ (but not GPR30) with DAT. Conditions which cause efflux (a 9 min 10<sup>-9 </sup>M E<sub>2 </sub>treatment) cause trafficking of ERα (stimulatory) to the plasma membrane and trafficking of ERβ (inhibitory) away from the plasma membrane. In contrast, E<sub>1 </sub>and E<sub>3 </sub>can inhibit efflux with a nonmonotonic dose pattern, and cause DAT to leave the plasma membrane.</p> <p>Conclusion</p> <p>Such mechanisms explain how gender biases in some DAT-dependent diseases can occur.</p

    Polydrug Use among IDUs in Tijuana, Mexico: Correlates of Methamphetamine Use and Route of Administration by Gender

    Get PDF
    Tijuana is situated on the Mexico–USA border adjacent to San Diego, CA, on a major drug trafficking route. Increased methamphetamine trafficking in recent years has created a local consumption market. We examined factors associated with methamphetamine use and routes of administration by gender among injection drug users (IDUs). From 2006–2007, IDUs ≥18 years old in Tijuana were recruited using respondent-driven sampling, interviewed, and tested for HIV, syphilis, and TB. Logistic regression was used to assess associations with methamphetamine use (past 6 months), stratified by gender. Among 1,056 participants, methamphetamine use was more commonly reported among females compared to males (80% vs. 68%, p < 0.01), particularly, methamphetamine smoking (57% vs. 34%; p < 0.01). Among females (N = 158), being aged >35 years (AOR, 0.2; 95% CI, 0.1–0.6) was associated with methamphetamine use. Among males (N = 898), being aged >35 years (AOR, 0.5; 95% CI, 0.3–0.6), homeless (AOR, 1.4 (0.9–2.2)), and ever reporting sex with another male (MSM; AOR, 1.9; 95% CI, 1.4–2.7) were associated with methamphetamine use. Among males, a history of MSM was associated with injection, while sex trade and >2 casual sex partners were associated with multiple routes of administration. HIV was higher among both males and females reporting injection as the only route of methamphetamine administration. Methamphetamine use is highly prevalent among IDUs in Tijuana, especially among females. Routes of administration differed by gender and subgroup which has important implications for tailoring harm reduction interventions and drug abuse treatment

    Current and prospective pharmacological targets in relation to antimigraine action

    Get PDF
    Migraine is a recurrent incapacitating neurovascular disorder characterized by unilateral and throbbing headaches associated with photophobia, phonophobia, nausea, and vomiting. Current specific drugs used in the acute treatment of migraine interact with vascular receptors, a fact that has raised concerns about their cardiovascular safety. In the past, α-adrenoceptor agonists (ergotamine, dihydroergotamine, isometheptene) were used. The last two decades have witnessed the advent of 5-HT1B/1D receptor agonists (sumatriptan and second-generation triptans), which have a well-established efficacy in the acute treatment of migraine. Moreover, current prophylactic treatments of migraine include 5-HT2 receptor antagonists, Ca2+ channel blockers, and β-adrenoceptor antagonists. Despite the progress in migraine research and in view of its complex etiology, this disease still remains underdiagnosed, and available therapies are underused. In this review, we have discussed pharmacological targets in migraine, with special emphasis on compounds acting on 5-HT (5-HT1-7), adrenergic (α1, α2, and β), calcitonin gene-related peptide (CGRP 1 and CGRP2), adenosine (A1, A2, and A3), glutamate (NMDA, AMPA, kainate, and metabotropic), dopamine, endothelin, and female hormone (estrogen and progesterone) receptors. In addition, we have considered some other targets, including gamma-aminobutyric acid, angiotensin, bradykinin, histamine, and ionotropic receptors, in relation to antimigraine therapy. Finally, the cardiovascular safety of current and prospective antimigraine therapies is touched upon

    Neural Circuits Underlying Rodent Sociality: A Comparative Approach

    Get PDF
    All mammals begin life in social groups, but for some species, social relationships persist and develop throughout the course of an individual’s life. Research in multiple rodent species provides evidence of relatively conserved circuitry underlying social behaviors and processes such as social recognition and memory, social reward, and social approach/avoidance. Species exhibiting different complex social behaviors and social systems (such as social monogamy or familiarity preferences) can be characterized in part by when and how they display specific social behaviors. Prairie and meadow voles are closely related species that exhibit similarly selective peer preferences but different mating systems, aiding direct comparison of the mechanisms underlying affiliative behavior. This chapter draws on research in voles as well as other rodents to explore the mechanisms involved in individual social behavior processes, as well as specific complex social patterns. Contrasts between vole species exemplify how the laboratory study of diverse species improves our understanding of the mechanisms underlying social behavior. We identify several additional rodent species whose interesting social structures and available ecological and behavioral field data make them good candidates for study. New techniques and integration across laboratory and field settings will provide exciting opportunities for future mechanistic work in non-model species

    An intrinsic vasopressin system in the olfactory bulb is involved in social recognition

    Get PDF
    Many peptides, when released as chemical messengers within the brain, have powerful influences on complex behaviours. Most strikingly, vasopressin and oxytocin, once thought of as circulating hormones whose actions were confined to peripheral organs, are now known to be released in the brain where they play fundamentally important roles in social behaviours1. In humans, disruptions of these peptide systems have been linked to several neurobehavioural disorders, including Prader-Willi syndrome, affective disorders, and obsessive-compulsive disorder, and polymorphisms of the vasopressin V1a receptor have been linked to autism2,3. Here we report that the rat olfactory bulb contains a large population of interneurones which express vasopressin, that blocking the actions of vasopressin in the olfactory bulb impairs the social recognition abilities of rats, and that vasopressin agonists and antagonists can modulate the processing of information by olfactory bulb neurones. The findings indicate that social information is processed in part by a vasopressin system intrinsic to the olfactory system
    corecore