31 research outputs found

    Global data set of long-term summertime vertical temperature profiles in 153 lakes

    Get PDF
    Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change

    Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes

    Get PDF
    Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970-2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of +0.37°C decade-1, comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+0.08 kg m-3 decade-1). In contrast, however, deepwater temperature trends showed little change on average (+0.06°C decade-1 ), but had high variability across lakes, with trends in individual lakes ranging from -0.68°C decade-1 to +0.65°C decade-1 . The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences.Additional co-authors: Karl Havens, Dag O Hessen, Scott N Higgins, Timo H Huttula, Hannu Huuskonen, Peter D F Isles, Klaus D Joehnk, Wendel Bill Keller, Lesley B Knoll, Johanna Korhonen, Benjamin M Kraemer, Peter R Leavitt, Fabio Lepori, Martin S Luger, Stephen C Maberly, John M Melack, Stephanie J Melles, Döerthe C Müller-Navarra, Don C Pierson, Helen V Pislegina, Pierre-Denis Plisnier, David C Richardson, Alon Rimmer, Michela Rogora, James A Rusak, Steven Sadro, Nico Salmaso, Jasmine E Saros, Émilie Saulnier-Talbot, Daniel E Schindler, Martin Schmid, Svetlana V Shimaraeva, Eugene A Silow, Lewis M Sitoki, Ruben Sommaruga, Dietmar Straile, Kristin E Strock, Wim Thiery, Maxim A Timofeyev, Piet Verburg, Rolf D Vinebrooke, Gesa A Weyhenmeyer, Egor Zaderee

    Global data set of long-term summertime vertical temperature profiles in 153 lakes

    Get PDF
    Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change

    Global data set of long-term summertime vertical temperature profiles in 153 lakes

    Get PDF
    Measurement(s) : temperature of water, temperature profile Technology Type(s) : digital curation Factor Type(s) : lake location, temporal interval Sample Characteristic - Environment : lake, reservoir Sample Characteristic - Location : global Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.14619009Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change

    Polinización de orquídeas en Guatemala: los polinizadores, el estado natural de sus poblaciones y las implicaciones para las especies polinizadas

    No full text
    Se ha logrado identificar por observación directa a los polinizadores de 118 especies de orquídeas, que representan el 16% de los 734 taxa confirmados en Guatemala. Respecto a otras 233 especies (32%), la literatura nos permite sugerir las categorías represen- tadas por los polinizadores.Se ha logrado identificar por observación directa a los polinizadores de 118 especies de orquídeas, que representan el 16% de los 734 taxa confirmados en Guatemala. Respecto a otras 233 especies (32%), la literatura nos permite sugerir las categorías represen- tadas por los polinizadores

    Adiciones a la flora orquideológica de Guatemala 1: Encyclia hanburii

    No full text

    Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes

    No full text
    Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970-2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of + 0.37 °C decade-1, comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+ 0.08 kg m-3 decade-1). In contrast, however, deepwater temperature trends showed little change on average (+ 0.06 °C decade-1), but had high variability across lakes, with trends in individual lakes ranging from - 0.68 °C decade-1 to + 0.65 °C decade-1. The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences.publishe

    Morphometry and average temperature affect global lake stratification responses to climate change

    Get PDF
    International audienceClimate change is affecting lake stratification with consequences for water quality and the benefits that lakes provide to society. Here we use long-term temperature data (1970–2010) from 26 lakes around the world to show that climate change has altered lake stratification globally and that the magnitudes of lake stratification changes are primarily controlled by lake morphometry (mean depth, surface area, and volume) and mean lake temperature. Deep lakes and lakes with high average temperatures have experienced the largest changes in lake stratification even though their surface temperatures tend to be warming more slowly. These results confirm that the nonlinear relationship between water density and water temperature and the strong dependence of lake stratification on lake morphometry makes lake temperature trends relatively poor predictors of lake stratification trends
    corecore