14 research outputs found

    DNA Barcoding the Geometrid Fauna of Bavaria (Lepidoptera): Successes, Surprises, and Questions

    Get PDF
    BACKGROUND: The State of Bavaria is involved in a research program that will lead to the construction of a DNA barcode library for all animal species within its territorial boundaries. The present study provides a comprehensive DNA barcode library for the Geometridae, one of the most diverse of insect families. METHODOLOGY/PRINCIPAL FINDINGS: This study reports DNA barcodes for 400 Bavarian geometrid species, 98 per cent of the known fauna, and approximately one per cent of all Bavarian animal species. Although 98.5% of these species possess diagnostic barcode sequences in Bavaria, records from neighbouring countries suggest that species-level resolution may be compromised in up to 3.5% of cases. All taxa which apparently share barcodes are discussed in detail. One case of modest divergence (1.4%) revealed a species overlooked by the current taxonomic system: Eupithecia goossensiata Mabille, 1869 stat.n. is raised from synonymy with Eupithecia absinthiata (Clerck, 1759) to species rank. Deep intraspecific sequence divergences (>2%) were detected in 20 traditionally recognized species. CONCLUSIONS/SIGNIFICANCE: The study emphasizes the effectiveness of DNA barcoding as a tool for monitoring biodiversity. Open access is provided to a data set that includes records for 1,395 geometrid specimens (331 species) from Bavaria, with 69 additional species from neighbouring regions. Taxa with deep intraspecific sequence divergences are undergoing more detailed analysis to ascertain if they represent cases of cryptic diversity

    DNA Barcoding for Community Ecology - How to Tackle a Hyperdiverse, Mostly Undescribed Melanesian Fauna

    Get PDF
    Trigonopterus weevils are widely distributed throughout Melanesia and hyperdiverse in New Guinea. They are a dominant feature in natural forests, with narrow altitudinal zonation. Their use in community ecology has been precluded by the "taxonomic impediment". We sampled >6,500 specimens from seven areas across New Guinea; 1,002 specimens assigned to 270 morphospecies were DNA sequenced. Objective clustering of a refined dataset (excluding nine cryptic species) at 3% threshold revealed 324 genetic clusters (DNA group count relative to number of morphospecies = 20.0% overestimation of species diversity, or 120.0% agreement) and 85.6% taxonomic accuracy (the proportion of DNA groups that "perfectly" agree with morphology-based species hypotheses). Agreement and accuracy were best at an 8% threshold. GMYC analysis revealed 328 entities (21.5% overestimation) with 227 perfect GMYC entities (84.1% taxonomic accuracy). Both methods outperform the parataxonomist (19% underestimation; 31.6% taxonomic accuracy). The number of species found in more than one sampling area was highest in the Eastern Highlands and Huon (Sørensen similarity index 0.07, 4 shared species); ⅓ of all areas had no species overlap. Success rates of DNA barcoding methods were lowest when species showed a pronounced geographical structure. In general, Trigonopterus show high α and β-diversity across New Guinea. DNA barcoding is an excellent tool for biodiversity surveys but success rates might drop when closer localities are included. Hyperdiverse Trigonopterus are a useful taxon for evaluating forest remnants in Melanesia, allowing finer-grained analyses than would be possible with vertebrate taxa commonly used to date. Our protocol should help establish other groups of hyperdiverse fauna as target taxa for community ecology. Sequencing delivers objective data on taxa of incredible diversity but mostly without a solid taxonomic foundation and should help pave the road for the eventual formal naming of new species

    Advances in Computational Social Science and Social Simulation

    Get PDF
    Aquesta conferència és la celebració conjunta de la "10th Artificial Economics Conference AE", la "10th Conference of the European Social Simulation Association ESSA" i la "1st Simulating the Past to Understand Human History SPUHH".Conferència organitzada pel Laboratory for Socio­-Historical Dynamics Simulation (LSDS-­UAB) de la Universitat Autònoma de Barcelona.Readers will find results of recent research on computational social science and social simulation economics, management, sociology,and history written by leading experts in the field. SOCIAL SIMULATION (former ESSA) conferences constitute annual events which serve as an international platform for the exchange of ideas and discussion of cutting edge research in the field of social simulations, both from the theoretical as well as applied perspective, and the 2014 edition benefits from the cross-fertilization of three different research communities into one single event. The volume consists of 122 articles, corresponding to most of the contributions to the conferences, in three different formats: short abstracts (presentation of work-in-progress research), posters (presentation of models and results), and full papers (presentation of social simulation research including results and discussion). The compilation is completed with indexing lists to help finding articles by title, author and thematic content. We are convinced that this book will serve interested readers as a useful compendium which presents in a nutshell the most recent advances at the frontiers of computational social sciences and social simulation researc

    Regulation of the autophagy protein ULK1 in the MPTP mouse model of Parkinson's disease

    No full text
    Parkinson’s disease (PD) is a widespread neurodegenerative condition. Owing to the absence of suitable biomarkers, a diagnosis can only be made upon onset of clinical symptoms like tremor, rigidity or bradykinesia. They occur mainly due to degeneration of the nigrostriatal system, but other brain areas and autonomic nerves are also affected by PD. The demise of dopaminergic neurons and the presence of Lewy bodies in affected neuronal somas and axons represent the most recognized histopathologic hallmark of PD. With exception of the monogenetic forms of PD, its etiology is multifactorial and based on gene-environment interaction. Autophagy, as a highly conserved homeostatic and vital process, is dysregulated in Parkinson diseased brains and contributes to axonal and neuronal death. Therefore, the present study aimed to assess neuroprotective and neurorestorative properties of competitive autophagy inhibition via Adeno-associated virus-mediated ULK1.DN gene expression in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model. It could be demonstrated that ULK1.DN expression was able to rescue dopaminergic cell bodies from MPTP-induced neurotoxicity two weeks post MPTP treatment. Furthermore, also dopaminergic striatal fibers were significantly protected as compared to controls. Western blot analysis confirmed a downregulation of autophagy by ULK1.DN overexpression and showed a significant activation of Mammalian target of rapamycin (mTOR) signaling. While striatal dopamine levels could not be rescued by ULK1.DN gene expression, a beneficial effect in motor behavior in the cylinder rearing test was observed six weeks post MPTP treatment, pointing towards beneficial long-term effects of ULK1.DN expression. Part of a possible explanation for these findings may be the modulation of extrastriatal dopaminergic projections and an enhanced sprouting and synapse formation. Taking all these aspects into consideration, competitive autophagy inhibition via ULK1.DN expression shows promising neuroprotective properties as well as beneficial long-term effects on motor skills. Consequently, competitive autophagy inhibition may be considered a promising target in future therapeutic approaches of PD.2022-11-2

    The evolution and genomic basis of beetle diversity

    No full text
    The order Coleoptera (beetles) is arguably the most speciose group of animals, but the evolutionary history of beetles, including the impacts of plant feeding (herbivory) on beetle diversification, remain poorly understood. We inferred the phylogeny of beetles using 4,818 genes for 146 species, estimated timing and rates of beetle diversification using 89 genes for 521 species representing all major lineages and traced the evolution of beetle genes enabling symbiont-independent digestion of lignocellulose using 154 genomes or transcriptomes. Phylogenomic analyses of these uniquely comprehensive datasets resolved previously controversial beetle relationships, dated the origin of Coleoptera to the Carboniferous, and supported the codiversification of beetles and angiosperms. Moreover, plant cell wall-degrading enzymes (PCWDEs) obtained from bacteria and fungi via horizontal gene transfers may have been key to the Mesozoic diversification of herbivorous beetles—remarkably, both major independent origins of specialized herbivory in beetles coincide with the first appearances of an arsenal of PCWDEs encoded in their genomes. Furthermore, corresponding (Jurassic) diversification rate increases suggest that these novel genes triggered adaptive radiations that resulted in nearly half of all living beetle species. We propose that PCWDEs enabled efficient digestion of plant tissues, including lignocellulose in cell walls, facilitating the evolution of uniquely specialized plant-feeding habits, such as leaf mining and stem and wood boring. Beetle diversity thus appears to have resulted from multiple factors, including low extinction rates over a long evolutionary history, codiversification with angiosperms, and adaptive radiations of specialized herbivorous beetles following convergent horizontal transfers of microbial genes encoding PCWDEs
    corecore