50 research outputs found

    An Open-Source 7-Axis, Robotic Platform to Enable Dexterous Procedures within CT Scanners

    Full text link
    This paper describes the design, manufacture, and performance of a highly dexterous, low-profile, 7 Degree-of-Freedom (DOF) robotic arm for CT-guided percutaneous needle biopsy. Direct CT guidance allows physicians to localize tumours quickly; however, needle insertion is still performed by hand. This system is mounted to a fully active gantry superior to the patient's head and teleoperated by a radiologist. Unlike other similar robots, this robot's fully serial-link approach uses a unique combination of belt and cable drives for high-transparency and minimal-backlash, allowing for an expansive working area and numerous approach angles to targets all while maintaining a small in-bore cross-section of less than 16cm216cm^2. Simulations verified the system's expansive collision free work-space and ability to hit targets across the entire chest, as required for lung cancer biopsy. Targeting error is on average <1mm<1mm on a teleoperated accuracy task, illustrating the system's sufficient accuracy to perform biopsy procedures. The system is designed for lung biopsies due to the large working volume that is required for reaching peripheral lung lesions, though, with its large working volume and small in-bore cross-sectional area, the robotic system is effectively a general-purpose CT-compatible manipulation device for percutaneous procedures. Finally, with the considerable development time undertaken in designing a precise and flexible-use system and with the desire to reduce the burden of other researchers in developing algorithms for image-guided surgery, this system provides open-access, and to the best of our knowledge, is the first open-hardware image-guided biopsy robot of its kind.Comment: 8 pages, 9 figures, final submission to IROS 201

    How Jupiters save or destroy inner Neptunes around evolved stars

    Get PDF
    In about 6 Gyr our Sun will evolve into a red giant and finally end its life as a white dwarf. This stellar metamorphosis will occur to virtually all known host stars of exoplanetary systems and is therefore crucial for their final fate. It is clear that the innermost planets will be engulfed and evaporated during the giant phase and that planets located farther out will survive. However, the destiny of planets in-between, at ~1 and 10 au, has not yet been investigated with a multiplanet tidal treatment. We here combine for the first time multiplanet interactions, stellar evolution, and tidal effects in an N-body code to study the evolution of a Neptune–Jupiter planetary system. We report that the fate of the Neptune-mass planet, located closer to the star than the Jupiter-mass planet, can be very different from the fate of a single Neptune. The simultaneous effects of gravitational interactions, mass loss, and tides can drive the planetary system toward mean motion resonances. Crossing these resonances affects particularly the eccentricity of the Neptune and thereby also its fate, which can be engulfment, collision with the Jupiter-mass planet, ejection from the system, or survival at a larger separation

    Observations of gas flows inside a protoplanetary gap

    Get PDF
    Gaseous giant planet formation is thought to occur in the first few million years following stellar birth. Models predict that giant planet formation carves a deep gap in the dust component (shallower in the gas). Infrared observations of the disk around the young star HD142527, at ~140pc, found an inner disk ~10AU in radius, surrounded by a particularly large gap, with a disrupted outer disk beyond 140AU, indicative of a perturbing planetary-mass body at ~90 AU. From radio observations, the bulk mass is molecular and lies in the outer disk, whose continuum emission has a horseshoe morphology. The vigorous stellar accretion rate would deplete the inner disk in less than a year, so in order to sustain the observed accretion, matter must flow from the outer-disk into the cavity and cross the gap. In dynamical models, the putative protoplanets channel outer-disk material into gap-crossing bridges that feed stellar accretion through the inner disk. Here we report observations with the Atacama Large Millimetre Array (ALMA) that reveal diffuse CO gas inside the gap, with denser HCO+ gas along gap-crossing filaments, and that confirm the horseshoe morphology of the outer disk. The estimated flow rate of the gas is in the range 7E-9 to 2E-7 Msun/yr, which is sufficient to maintain accretion onto the star at the present rate

    The detection of dust around NN Ser

    Get PDF
    Eclipse timing variations observed from the post common-envelope binary (PCEB) NN Ser offer strong evidence in favour of circumbinary planets existing around PCEBs. If real, these planets may be accompanied by a disc of dust. We here present the ALMA detection of flux at 1.3 mm from NN Ser, which is likely due to thermal emission from a dust disc of mass ∼ 0.8±0.2 M⊕. We performed simulations of the history of NN Ser to determine possible origins of this dust, and conclude that the most likely origin is, in fact, common-envelope material which was not expelled from the system and instead formed a circumbinary disc. These discs have been predicted by theory but previously remained undetected. While the presence of this dust does not prove the existence of planets around NN Ser, it adds credibility to the possibility of planets forming from common-envelope material in a ‘second-generation’ scenario

    Exoplanet imaging data challenge: benchmarking the various image processing methods for exoplanet detection

    Get PDF
    The Exoplanet Imaging Data Challenge is a community-wide effort meant to offer a platform for a fair and common comparison of image processing methods designed for exoplanet direct detection. For this purpose, it gathers on a dedicated repository (Zenodo), data from several high-contrast ground-based instruments worldwide in which we injected synthetic planetary signals. The data challenge is hosted on the CodaLab competition platform, where participants can upload their results. The specifications of the data challenge are published on our website https://exoplanet-imaging-challenge.github.io/. The first phase, launched on the 1st of September 2019 and closed on the 1st of October 2020, consisted in detecting point sources in two types of common data-set in the field of high-contrast imaging: data taken in pupil-tracking mode at one wavelength (subchallenge 1, also referred to as ADI) and multispectral data taken in pupil-tracking mode (subchallenge 2, also referred to as ADI+mSDI). In this paper, we describe the approach, organisational lessons-learnt and current limitations of the data challenge, as well as preliminary results of the participants’ submissions for this first phase. In the future, we plan to provide permanent access to the standard library of data sets and metrics, in order to guide the validation and support the publications of innovative image processing algorithms dedicated to high-contrast imaging of planetary systems

    The Seventh Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11663 deg^2 of imaging data, with most of the roughly 2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry over 250 deg^2 along the Celestial Equator in the Southern Galactic Cap. A coaddition of these data goes roughly two magnitudes fainter than the main survey. The spectroscopy is now complete over a contiguous area of 7500 deg^2 in the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog (UCAC-2), reducing the rms statistical errors at the bright end to 45 milli-arcseconds per coordinate. A systematic error in bright galaxy photometr is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat-fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities. (Abridged)Comment: 20 pages, 10 embedded figures. Accepted to ApJS after minor correction
    corecore