This paper describes the design, manufacture, and performance of a highly
dexterous, low-profile, 7 Degree-of-Freedom (DOF) robotic arm for CT-guided
percutaneous needle biopsy. Direct CT guidance allows physicians to localize
tumours quickly; however, needle insertion is still performed by hand. This
system is mounted to a fully active gantry superior to the patient's head and
teleoperated by a radiologist. Unlike other similar robots, this robot's fully
serial-link approach uses a unique combination of belt and cable drives for
high-transparency and minimal-backlash, allowing for an expansive working area
and numerous approach angles to targets all while maintaining a small in-bore
cross-section of less than 16cm2. Simulations verified the system's
expansive collision free work-space and ability to hit targets across the
entire chest, as required for lung cancer biopsy. Targeting error is on average
<1mm on a teleoperated accuracy task, illustrating the system's sufficient
accuracy to perform biopsy procedures. The system is designed for lung biopsies
due to the large working volume that is required for reaching peripheral lung
lesions, though, with its large working volume and small in-bore
cross-sectional area, the robotic system is effectively a general-purpose
CT-compatible manipulation device for percutaneous procedures. Finally, with
the considerable development time undertaken in designing a precise and
flexible-use system and with the desire to reduce the burden of other
researchers in developing algorithms for image-guided surgery, this system
provides open-access, and to the best of our knowledge, is the first
open-hardware image-guided biopsy robot of its kind.Comment: 8 pages, 9 figures, final submission to IROS 201