28 research outputs found

    Genotype by environment effects on promiscuous nodulation in soybean (Glycine max L. Merrill)

    Get PDF
    Open Access Journal; Published:17 March 2017Background Understanding factors influencing the expression of a trait is key in designing a breeding program. Genotype by environment interaction has great influence on most quantitative traits. Promiscuous nodulation is a trait of importance for soybean production in Africa, because of the soil bacteria Bradyrhizobium japonicum not being indigenous in most African soils. Most soybean cultivars require B. japonicum for nodulation leading to the need for seed inoculation before sowing soybean in Africa. Few cultivars have capability to nodulate with Bradyrhizobia spp. that are different from B. japonicum and native in African soils. Such cultivars are termed “promiscuous cultivars.” Field experiments were conducted in six locations in Uganda for two seasons, to investigate the extent of environmental influences on the nodulation ability of promiscuous soybean genotypes. Results Additive main effect and multiplicative interaction effects showed highly significant environment and genotype by environment (G × E) interaction effects on all nodulation traits. G × E interaction contributed more to the total variation than genotypes. The genotypes Kabanyolo I and WonderSoya were the most stable for nodules’ dry weight (NDW), which is the nodulation trait the most correlated with grain yield. Genotype UG5 was the most stable for nodules’ number (NN), and Nam II for nodules’ effectiveness (NE). The genotype NamSoy 4M had the highest performance for NN, NFW, and NDW, but was less stable. WonderSoya had the highest NE. Genotype and genotype by environment analysis grouped environments into mega-environments (MEs), and four MEs were observed for NDW, with NamSoy 4M the winning genotype in the largest ME, and Kasese B the ideal environment for that nodulation trait. Conclusion This study provides information that can guide breeding strategies. The low genetic effect that led to high environmental and G × E interaction effects raised the need for multi-environments testing before cultivar selection and recommendation. The study revealed genotypes that are stable and others that are high performing for nodulation traits, and which can be used as parental lines in breeding programs

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Tailoring Panchromatic Absorption and Excited-State Dynamics of Tetrapyrrole–Chromophore (Bodipy, Rylene) ArraysInterplay of Orbital Mixing and Configuration Interaction

    No full text
    Three sets of tetrapyrrole–chromophore arrays have been examined that exhibit panchromatic absorption across large portions of the near-ultraviolet (NUV) to near-infrared (NIR) spectrum along with favorable excited-state properties for use in solar-energy conversion. The arrays vary the tetrapyrrole (porphyrin, chlorin, bacteriochlorin), chromophore (boron-dipyrrin, perylene, terrylene), and attachment sites (meso-position, β-pyrrole position). In all, seven dyads, one triad, and nine benchmarks in toluene and benzonitrile were studied using steady-state and time-resolved absorption and fluorescence spectroscopy. The results were analyzed with the aid of density functional theory (DFT) and time-dependent DFT calculations. Natural transition orbitals (NTOs) were constructed to assess the net change in electron density associated with each NUV–NIR absorption transition. The porphyrin–perylene dyad <b>P-PMI</b> displays the most even spectral coverage from 400 to 700 nm, with an average ε ∼ 43 000 M<sup>–1</sup> cm<sup>–1</sup>. A significant contributor is a chromophore-induced reduction in the configuration interaction involving the four frontier molecular orbitals of benchmark porphyrins and associated constructive/destructive transition-dipole interference that results in intense (ε ∼ 400 000 M<sup>–1</sup> cm<sup>–1</sup>) NUV and weak (<20 000 M<sup>–1</sup> cm<sup>–1</sup>) visible features. <b>P-PMI</b> has an S<sub>1</sub> lifetime (τ<sub>S</sub>) of 4.7 ns in toluene and 1.3 ns in benzonitrile. Bacteriochlorin analogue <b>BC-PMI</b> has more extended spectral coverage (350–750 nm) and τ<sub>S</sub> = 2.8 ns in toluene and 30 ps in benzonitrile. Terrylene analogue <b>P-TMI</b> has intermediate optical characteristics with τ<sub>S</sub> = 310 ps in toluene and 150 ps in benzonitrile. The NTOs for most arrays show that S<sub>0</sub> → S<sub>1</sub> primarily involves the tetrapyrrole, but for <b>P-TMI</b> the NTOs have electron density delocalized over the two units as a result of extensive orbital mixing. Collectively, the insights obtained should aid the design of tetrapyrrole-based architectures for panchromatic light-harvesting systems for solar-energy conversion
    corecore