2,632 research outputs found

    RNAseq reveals hydrophobins that are involved in the adaptation of aspergillus nidulans to lignocellulose

    Get PDF
    Background Sugarcane is one of the world’s most profitable crops. Waste steam-exploded sugarcane bagasse (SEB) is a cheap, abundant, and renewable lignocellulosic feedstock for the next-generation biofuels. In nature, fungi seldom exist as planktonic cells, similar to those found in the nutrient-rich environment created within an industrial fermenter. Instead, fungi predominantly form biofilms that allow them to thrive in hostile environments. Results In turn, we adopted an RNA-sequencing approach to interrogate how the model fungus, Aspergillus nidulans, adapts to SEB, revealing the induction of carbon starvation responses and the lignocellulolytic machinery, in addition to morphological adaptations. Genetic analyses showed the importance of hydrophobins for growth on SEB. The major hydrophobin, RodA, was retained within the fungal biofilm on SEB fibres. The StuA transcription factor that regulates fungal morphology was up-regulated during growth on SEB and controlled hydrophobin gene induction. The absence of the RodA or DewC hydrophobins reduced biofilm formation. The loss of a RodA or a functional StuA reduced the retention of the hydrolytic enzymes within the vicinity of the fungus. Hence, hydrophobins promote biofilm formation on SEB, and may enhance lignocellulose utilisation via promoting a compact substrate-enzyme-fungus structure. Conclusion This novel study highlights the importance of hydrophobins to the formation of biofilms and the efficient deconstruction of lignocellulose

    The dynamic exponent of the Ising model on negatively curved surfaces

    Get PDF
    We investigate the dynamic critical exponent of the two-dimensional Ising model defined on a curved surface with constant negative curvature. By using the short-time relaxation method, we find a quantitative alteration of the dynamic exponent from the known value for the planar Ising model. This phenomenon is attributed to the fact that the Ising lattices embedded on negatively curved surfaces act as ones in infinite dimensions, thus yielding the dynamic exponent deduced from mean field theory. We further demonstrate that the static critical exponent for the correlation length exhibits the mean field exponent, which agrees with the existing results obtained from canonical Monte Carlo simulations.Comment: 14 pages, 3 figures. to appear in J. Stat. Mec

    Effects of leg muscle fatigue on gait in patients with Parkinson's disease and controls with high and low levels of daily physical activity

    Get PDF
    Patients with Parkinson's disease (PD) are more susceptible to muscle fatigue, which can damage their gait. Physical activity can improve muscle condition, which is an important aspect during walking. The aim of this study was to analyze the effects of lower limb muscle fatigue on gait in patients with PD and healthy individuals, grouped according to physical activity level. Twenty Patients with PD (PD group) and 20 matched individuals (control group) were distributed according to physical activity level into four subgroups of ten individuals (active and inactive). Participants performed three walking trials before and after lower limb muscle fatigue, induced by a repeated sit-to-stand task on a chair. Kinematic (stride length, width, duration, velocity and percentage of time in double support) and kinetic (propulsive and breaking anterior-posterior and medio-lateral impulse) gait parameters were analyzed. In both groups, participants increased stride length and velocity and decreased stride duration and braking vertical impulse after lower limb muscle fatigue. The PD groups presented higher step width and percentage of double time support than the control groups before muscle fatigue. The control groups increased step width and decreased percentage of time in double support, while the PD groups did not change these parameters. For physical activity level, active individuals presented longer stride length, greater stride velocity, higher braking and propulsive anterior-posterior impulse and shorter step width than inactive individuals. Groups sought more balance and safety after lower limb muscle fatigue. Physical activity level does not appear to modify the effects of lower limb muscle fatigue during unobstructed walking in individuals with PD or controls

    Linking Seasonal Reduction of Microbial Diversity to Increase in Winter Temperature of Waters of a Chilean Patagonia Fjord

    Get PDF
    Since microorganisms play a major role in the biogeochemistry of the ocean, understanding structure and dynamics of natural microbial communities is crucial in assessing the impact of environmental changes on marine ecosystems. In order to identify key environmental drivers of microbial community structure in Chilean Patagonian fjords, we analyzed composition of the prokaryotic community over an annual cycle at a single sampling site in Puyuhuapi Fjord. Distinctive communities represented mainly by Actinomycetales, Rhodobacteraceae, Cryomorphaceae, and Flavobacteriaceae were associated with Estuarine Fresh Waters, whereas Cenarchaeaceae and Oceanospirillales were representative of Modified Sub Antarctic Waters present in the fjord. Salinity and oxygen were first-order factors explaining segregation of microbial communities in these contrasting water masses. Positive correlations of members of Flavobacteriaceae, Alteromonadales, and Verrucomicrobiales with diatoms in subsurface waters and of Flavobacteriales (Cryomorphaceae and Flavobacteriaceae), Rhodobacteraceae, and Pelagibacteraceae with dinoflagellates in surface waters suggest that phytoplankton composition could define specific niches for microorganisms in Puyuhuapi fjord waters. A dramatic reduction of richness and individual abundances within Flavobacteriaceae, Rhodobacteraceae, and Cenarchaeaceae families was principally explained by seasonal increase of surface water temperature, with major reduction associated with changes in temperature during winter conditions. Taxa that are sensitive to increased temperature are key components of organic matter and element cycling, and we therefore suggest that potential decrease in diversity associated with rising of surface water temperature could impact current biogeochemical status of Patagonian fjord ecosystems

    Structural basis for assembly of vertical single ÎČ-barrel viruses

    Get PDF
    The vertical double beta-barrel major capsid protein (MCP) fold, fingerprint of the PRD1-adeno viral lineage, is widespread in many viruses infecting organisms across the three domains of life. The discovery of PRD1-like viruses with two MCPs challenged the known assembly principles. Here, we present the cryo-electron microscopy (cryo-EM) structures of the archaeal, halophilic, internal membrane-containing Haloarcula californiae icosahedral virus 1 (HCIV-1) and Haloarcula hispanica icosahedral virus 2 (HHIV-2) at 3.7 and 3.8 angstrom resolution, respectively. Our structures reveal proteins located beneath the morphologically distinct two- and three-tower capsomers and homopentameric membrane proteins at the vertices that orchestrate the positioning of pre-formed vertical single beta-barrel MCP heterodimers. The cryo-EM based structures together with the proteomics data provide insights into the assembly mechanism of this type of viruses and into those with membrane-less double beta-barrel MCPs.Peer reviewe

    Entropy analysis of high-definition transcranial electric stimulation effects on EEG dynamics

    Get PDF
    A foundation of medical research is time series analysis—the behavior of variables of interest with respect to time. Time series data are often analyzed using the mean, with statistical tests applied to mean differences, and has the assumption that data are stationary. Although widely practiced, this method has limitations. Here we present an alternative statistical approach with sample analysis that provides a summary statistic accounting for the non-stationary nature of time series data. This work discusses the use of entropy as a measurement of the complexity of time series, in the context of Neuroscience, due to the non-stationary characteristic of the data. To elucidate our argument, we conducted entropy analysis on a sample of electroencephalographic (EEG) data from an interventional study using non-invasive electrical brain stimulation. We demonstrated that entropy analysis could identify intervention-related change in EEG data, supporting that entropy can be a useful “summary” statistic in non-linear dynamical systems

    Novel scaling behavior of the Ising model on curved surfaces

    Full text link
    We demonstrate the nontrivial scaling behavior of Ising models defined on (i) a donut-shaped surface and (ii) a curved surface with a constant negative curvature. By performing Monte Carlo simulations, we find that the former model has two distinct critical temperatures at which both the specific heat C(T)C(T) and magnetic susceptibility χ(T)\chi(T) show sharp peaks.The critical exponents associated with the two critical temperatures are evaluated by the finite-size scaling analysis; the result reveals that the values of these exponents vary depending on the temperature range under consideration. In the case of the latter model, it is found that static and dynamic critical exponents deviate from those of the Ising model on a flat plane; this is a direct consequence of the constant negative curvature of the underlying surface.Comment: 11 pages 5 figure
    • 

    corecore