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Abstract: A foundation of medical research is time series analysis—the behavior of variables of
interest with respect to time. Time series data are often analyzed using the mean, with statistical
tests applied to mean differences, and has the assumption that data are stationary. Although widely
practiced, this method has limitations. Here we present an alternative statistical approach with
sample analysis that provides a summary statistic accounting for the non-stationary nature of time
series data. This work discusses the use of entropy as a measurement of the complexity of time series,
in the context of Neuroscience, due to the non-stationary characteristic of the data. To elucidate
our argument, we conducted entropy analysis on a sample of electroencephalographic (EEG) data
from an interventional study using non-invasive electrical brain stimulation. We demonstrated that
entropy analysis could identify intervention-related change in EEG data, supporting that entropy can
be a useful “summary” statistic in non-linear dynamical systems.

Keywords: complexity measure; approximated entropy; time series; biosignal

1. Introduction

Following Prigogine [1], entropy is a measurement of complexity, among time series (TS) or signal
data, which associates the amount of information to a probability distribution. Before the 1990s, given
computational technological constraints, early entropy measure calculations were neglected because
they required great amount of data [2,3].

Time series data could be defined as observed values in time order. An illustrative example of
entropy motivated by Pincus’ work [4] can be expressed in two simple time series. The first is perfectly
regular, alternating between 0 and 1, such as 0,1,0,1,0,1,0,1,0,1,..., whereas the second is constructed
by randomly drawing 0 and 1 with probability 1/2 each, for example 0,1,0,0,1,1,0,1,1,1,0,1,0,1,1,0,....
Moments of this example, such as mean and standard deviation, will not distinguish them because
both series have mean and deviation equals to 1/2, respectively. However, the first is a periodic time
series, while the second is not.

In the medical field, most of the data that is acquired as time series is modeled through its mean
(may also be complemented with its variance) that enables the application of the usual statistical
methods. According to the definition, a stationary process relies on the unconditional joint probability
distribution time-invariant. Therefore, stationarity is required to get a proper summarization of a
process via its mean, and this often is not the case in real data with temporal dependence.

Statistical analyses of time series require methods to incorporate the description of all
moment-generating function associated with the stochastic process, with the purpose of differing
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regularity from chaos in data. Entropy has been used to describe the changes in gene expression [5],
cardiac signals [4], postural control sway [6], blood oximetry [7], and to characterize epileptic seizure
using electroencephalographic (EEG) data [8]; however, much more could be explored using complex
outcome measures.

Nonlinear dynamical analysis is commonly used to interpret biological systems, including
the application of entropy for EEG analysis. Richman and Moorman [3] discuss the physiological
time-series analysis towards similar epochs using entropy. Stam [9] presents a novel review about
nonlinear dynamical features of information processing, such as local brain dynamics or the nonlinear
synchronization between recordings from different brain regions. Moreover, Acharya et al. [10]
decomposed EEG signals and extracted entropy features to identify areas affected by Epilepsy seizures.

The objective of the present study was to apply a robust methodology into a biological data set,
considering its complex structure in the statistical estimation processes. The nature of the EEG data
where brain electrical connections are present indicates that entropy form is a suitable method of
analysis. In this context, the current study is innovative since it combines the entropy method with the
appropriate statistical analysis, and mixed effects models due to the presence of unobserved variables.
This work is divided into two parts, the statistical robustness discussion, and the clinical gain by
its adoption.

The present data set used to describe the statistical approach was originated from a
randomized double-blinded sham-controlled clinical trial that aimed to investigate a polarity and
intensity-dependent shift in high-density EEG signal following an intervention using high-definition
transcranial direct current stimulation applied over the temporoparietal junction in healthy participants
(for protocol details read [11]).

We adopted two different statistical methods related to entropy for summarizing time series
as a single number; the Kullback-Leibler (KL) divergence and the Approximate Entropy (ApEn).
Both incorporated all the generated moments of the process, and enabled the use of traditional
models such as regression, while the independence assumption on the observations was not
violated. Consequently, it was possible to compare regularity contained in data, taking into account
computational feasibility, without losing valuable information. The Approximate Entropy was
introduced in the medical field by Pincus [4] as a method to discriminate biosignals events. Its first
application aimed to analyze the difference between healthy and altered patterns of heartbeat in infants,
through its electrocardiograms (ECGs), since it was known that patients with heart disease have more
regularity in the heartbeats. We now investigate its applicability in the context of Neuroscience.

The Kullback-Leibler (KL) divergence is the most commonly presented in statistics, and the
Approximate Entropy (ApEn) is described as useful in the case of non-stationary time series.
This application in experimental neurology relies on an established technique of transcranial
stimulation, indicated as a powerful experimental tool over the last two decades; despite the few
reproduced studies reported in the literature [12]. Our research findings integrate the knowledge for
the transient induction of vertical misperception in healthy subjects using electrical stimulation, and
consolidates the results found by Santos et al. [11] using usual statistical methods.

2. Methods

2.1. Overview

The paper is organized as follows. In the Methods Section 2, we included the background theory
(Section 2.2), where we present an overview of the effects and a brief description of the experimental
protocol, and the concepts behind the definition of entropy are adequately described. In Section 2.3
(“Simulation”), we use numerical simulations to establish a comparison between representing a TS
process using its mean versus its entropy, in a controlled scheme. As the results (Section 3), we apply
the use of entropy to our data analysis. We aim at an efficient summarization of our TS, using a
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hierarchical model to distinguish between stimulation types versus intensity, as well as quantifying
the differences in regularity among them. Finally, some concluding remarks are presented in Section 4.

2.2. Background Theory

2.2.1. Transcranial Direct Current Electrical Stimulation

Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique
that delivers a weak electrical current to the brain using electrodes attached to the scalp. While the
conventional protocols of tDCS use two sponge electrodes and stimulate a large area of the brain,
the high-definition protocols use multiple (>=4) and smaller gel-based electrodes that reach a more
focused brain area. Depending on the electrical current polarity (among other factors), the direct
effects of tDCS include the change in neuronal excitability [13]. Generally, cathodal stimulation
induces a decrease in neuronal excitability, whereas anodal stimulation induces an increase in cortical
excitability [14,15].

In addition to the direct tDCS effects, there are “indirect” effects driven by the connections of the
targeted area with distant cortical and sub-cortical areas [16]. Using functional magnetic resonance
imaging, Lang et al. [17] showed that the tDCS application over the right primary motor cortex (M1)
activates not only the areas under the electrodes but also several connected brain areas. These results
were interpreted based on the physiological concept of the functional interaction between M1 and
the diverse activated areas via cortico-cortical and cortico-subcortical connections. Other studies
using transcranial magnetic stimulation (TMS) described the increased activity of the homologous
area, contralateral to the stimuli [18–21]. Therefore, to assess the physiological effects of tDCS, it is
recommended to investigate not only under the targeted brain area but also in distant areas of the
related neural network.

Noninvasive techniques of brain stimulation are current therapeutic resources related to the
pathophysiology and behavior of the mechanisms that guide the human mind. In the field of
neuroscience, the clinical application of these tools has gained greater repercussion in the last two
decades, resulting in an eventual increase in the number of studies and clinical trials in this area [22,23].
Several studies have indicated the therapeutic efficacy of the use of non-invasive stimulus in psychiatric,
neurological, and motor disorders [16,24–26]

The influence of transcranial direct current electrical stimulation protocols in human postural
control has been described previously [27,28]. However, even with current evidence and decades
of experimentation on transcranial direct current stimulation, few protocols have achieved robust
scientific acceptance. Among the open questions about tDCS in humans, the dose-response effects can
be highlighted to develop more effective protocols for rehabilitation.

2.2.2. Stimulation Protocol

The study protocol, published in detail elsewhere [11], aimed to systematically analyze the
dose-response effects of a focal electrical stimulation. The HD-tDCS was placed over the right
temporo-parietal junction (TPJ) region (Figure 1). Seven healthy right-handed participants, mean age
34.7± 7.6 years, four men were assessed. A Soterix R© NY-USA equipment of HD-tDCS was used,
with a constant current from the anode to cathode. Participants received three electrical stimulation
conditions (anode center, cathode center, and sham) on three different days, with an interval of at least
24 h.

The HD − tDCS3×1 montage included four electrical stimulation electrodes; the single center
electrode was placed on the right hemisphere in the circumcenter of a triangle with vertices on the EEG
coordinates C4, T8, P4. The three surround electrodes were placed at a distance of 3 cm from the central
electrode, over P4, C4, and T8. The same position of the electrodes was used during the sham condition.
In the beginning of every session, an accommodation protocol was applied to increase tolerability
for participants, with the intensity of stimulation varying from 1 to 3 mA. The stimulation protocol
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comprised 3 blocks of 2 minutes at each current intensity (1, 2, and 3 mA), and an inter-stimulus
interval of 5 minutes between blocks. The approximate total duration of each session was 120 min.

A dense array EEG with 256-channel sensor net (Electrical Geodesics Inc., Eugene, OR, USA)
with a sampling frequency of 500 Hz (observation points per second) was used to detect ongoing
changes on the cortical neuronal activity in response to HD-tDCS. All channels were referenced to the
vertex (electrode CZ) with electrical impedance reduced. The EEG was recorded continuously before
and after the stimulation, including ramp-up and ramp-down periods, lasting in total between 120 min.
The data analyzed in the present study corresponds to the interval between the stimulation periods.

Figure 1. Position of the HD-tDCS electrodes and EEG 256-channel sensor net in a male participant.
Written informed consent was obtained from the participants for the publication of this image.

2.2.3. Entropy Background

As an alternative to analyzing and modeling the entire TS, one can use summary statistics,
which could be the average of the processor, for example, some measure of its regularity. The last one
is commonly used as an index to quantify the complexity of the TS, considering all of its generated
moments. It is relevant to discuss the relation between maximum likelihood estimation (MLE) and
information entropy.

Consider a random sample X = {X1, · · · , Xn} of random variables, all with a common
(but unknown) density f (x|θ0). From the data, it is possible to estimate its associated unknown
parameter θ, and then associate to it a density function (pdf) family (e.g., normal, gamma, beta
etc.). Our goal is to estimate θ through a robust statistic T, using the data X1, · · · , Xn, that is,
θ̂ = T(X1, · · · , Xn). As an illustration of a statistic we could have, for example, the sample mean,
in the case the times series under analysis are stationary,

T(X) = X̄ =
1
n

n

∑
i=1

Xi.

Then, using the MLE, one could obtain θ̂ as a joint density of the random sample, and using
a traditional result known by the (Strong or Weak) Law of Large Numbers, the sample negative
log-likelihood converges to its expected value (almost surely or in quadratic mean). Moreover, by the
asymptotic equipartition theorem (further details in McMillan [29]), this will converge to the differential
entropy of X. If x denotes the sample observations, then

h[ f (x|θ0)] = −E[log f (X|θ0)] = −
∫
R

fX(x|θ0) log fX(x|θ0)dx

Notice that using the expectation of the parameter, does not fix θ at θ0, and does not give us any
information about the conversion of the sample negative log-likelihood, and how it should behave
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(the only assumption of the asymptotic equipartition theorem is related to θ0). Therefore, adding and
subtracting the log-likelihood under the true model,

− 1
n

n

∑
i=1

[log f (Xi|θ) + log f (Xi|θ0)− log f (Xi|θ0)] =

=
1
n

n

∑
i=1

log
[

f (Xi|θ0)

f (Xi|θ)

]
− 1

n

n

∑
i=1

log f (Xi|θ0) =

= f (x|θ0, θ)− f (x|θ0)

Now the divergence of this estimator will be denoted as

DKL( f (x|θ0)|| f (x|θ)) = h[ f (x|θ0, θ)]− h[ f (x|θ0)]

where

DKL( f (x|θ0)|| f (x|θ)) =
∫
R

f (x|θ0) log
f (x|θ0)

f (x|θ) dx

known as the Kullback-Leibler divergence or relative entropy between f (x|θ0) and f (x|θ). Notice that
the mean negative log-likelihood converges to the differential entropy under the true distribution plus
the Kullback-Leibler divergence between the true distribution and the assumed distribution.

It is also possible to show that the Kullback-Leibler divergence is non-negative and is zero only
when f (x|θ0) = f (x|θ) almost surely. Consider that to minimize the mean negative log-likelihood,
implies that it is needed to choose means θ = θ0, which minimizes this limiting function.

Moreover, after a bit of a detour through information theory, we have seen a sketch as to why
MLE makes sense as a procedure for estimating a parameter θ. The mean negative log-likelihood
converges to a non-random function, as so takes its minimum at the correct answer to our question.
It is fully proving the consistency of the Maximum Likelihood Estimator it is out of this work scope.

Limitation among regularity in TS data is presented among the usage on entropy, where
stationarity is also recurrently needed. Despite this fact, the regularity statistic suggested by Pincus [2]
uses the capability to discern the changing of the complexity from such a relatively small amount
of data.

Simplistically, the proposed solution to summarize the TS, in one representative statistic, is based
on a recurrent calculation of conditional probabilities at the i-th time-window. The result is an average
obtained from the numbers of distance superior to the filter (r), d[x, x∗] = max |u(a)− u∗(a)|, therefore
calculating through Cm

i (r) as a relative frequency of generated vector.
Let us consider the vector u a vector of collected data, u(i) is the i-th observation of u, and x

is an element of a partition as following. Considering x(1) = {u(1), . . . , u(m)}, x(2) = {u(m +

1), . . . , u(2m)}, . . . , x(N −m + 1) = {u((N −m)m + 1), . . . , u((N −m + 1)m)}.
STEP 1. Consider a TS, equally spaced in time, contained N raw data values (u), from each series.

Then u(1), u(2), ..., u(N).
STEP 2. Adopt a length of compared runs of data (m), and a filtering level (r). Implying in a new

vector of data x(1), x(2), ..., x(N −m + 1).
STEP 3. For each i, 1 < i < N −m + 1, to construct Cm

i (r) = (cardinal d[x(i), x(j)] ≤ r)/(N −
m + 1) where i 6= j

STEP 4. Then, Φm(r) = ∑N−m+1
i=1 ln Cm

i (r)/(N −m + 1)
STEP 5. Calculate the average over i of ln towards conditional probability as ApEn = Φm(r)−

Φm+1(r)
The choice towards m affects the conditional probabilities directly well achieved with between

10m and 30m observations (as defined by Pincus [2]). The filter level (r) suggested is at least three
times the estimated mean noise amplitude. Important to point out about the consistency, even ApEn
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not been an absolute measure, theoretic analyses, whenever entropy(A) ≤ entropy(B) for noiseless
systems, then ApEn(A) ≤ ApEn(B).

2.3. Simulation

The mean estimator could be a good statistic to summarize a collection of the observation
given some mild behavior, e.g., in TS under the presence of stationarity. However, this is often
not the case in medical data. In order to illustrate a simulated case, four models were considered
as follows, which 100 simulated series of each was calculated then it is mean and Approximated
Entropy were estimated, considering different sample size (n) as n = {70, 100, 250, 500, 1000}.
Whereas Autoregressive (AR) model and Generalized AutoRegressive Conditional Heteroskedasticity
(GARCH) model.

Y(1)
t = φ1Yt−1 + ε, [AR(1)]

Y(2)
t = γ0 + Y(1)

t + α0 + α1ε2
t−1 + β1h2

t−1, [Inter. + AR(1) + GARCH(1, 1)]

Y(3)
t = γ ∗ t + Y(1)

t , [Linear Trend + AR(1)]

Y(4)
t =

γ ∗ t2

1000
+ Y(1)

t + α0 + α1ε2
t−1 + β1h2

t−1, [Quadratic Trend + AR(1) + GARCH(1, 1)]

where φ1 = 0.7, 0.9 as the autoregressive with different parameters, γ0 = 2 as an intercept, γ = 0.02, 0.2
as parameters for the deterministic trends (linear and quadratic). The γ parameter gives the series the
strength (influence) of its deterministic part.

As expected, Figure 2 shows that the mean estimator is very sensible, given where the series
sample was taken. Although, primarily, they are all generated from the same AR(1). As the sample
size grows, both trends influence more on its estimation.

Figure 2. Each figure represents a simulated series, which contains two parameters γ = 0.02, 0.2 and
φ = 0.7, 0.9 (in the top of each board). Each class (color) is associated with a given model, where as
the sample size (x-axis), and y-axis the mean statistic. Models x1 and x2 are presents more stochastic
components than x3 and x4, therefore one can not recognize through its means.

Considering the EEG montages (set), a standard methodology is to use a common reference
montage which compare every electrode in the head against a referenced one (usually the central,
Cz). Therefore, each participant will present a different unit amplitude wave, regardless of the channel,
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given this recording methodology uses a central channel to take an amplitude difference as a reference.
Then becoming extremely sensitive to each participants’ characteristic, so it can be bypassed using,
for example, an Approximate Entropy.

Fixing the parameters, for the entropy calculation, considering m = 2 and r = 0.2. Figure 3
explicit the simulated scenarios. Upper panels consider γ = 0.02 and φ1 = 0.7, 0.9 showing stability
for models m3 and m4 (the ones containing deterministic part) versus m1 and m2 as the sample size
grows. Lower panels consider γ = 0.2 which describes the increase of the deterministic part in models
m3 and m4, and this implies on keeping ApEn close and a low range regardless of its sample size
process (that is, closer to zero, which presents a great deterministic component in the series).

Figure 3. Each figure represents a simulated series, which contains two parameters γ = 0.02, 0.2 and
φ = 0.7, 0.9 (in the top of each board). Each class (color) is associated with a given model, where as
the sample size (x-axis), and y-axis the Approximate Entropy statistic. Models x1 and x2 are presents
more stochastic components than x3 and x4, now recognize based on its entropy, especially as the
sample size grows (showing stability). That is, x1 and x2 gets close to 1, meaning the is predominately
originated from a stochastic process.

It is essential to mention, as Pincus [2] elucidates, that ApEn stability it is conditioned to the fixed
parameter m where the number of observations (n) needs to be between 10m < n < 30m. Thereby,
samples below this will not guarantee its efficiency.

The influences observed in the estimations of the mean exemplifies this statistic is non-robust to
under non-stationarity TS. Dealing with EEG signal is challenging, given its scale conditional to its
participant and brain region. The record is made using the technology of a differential amplifier, which
takes the difference of two inputs and displays only one output, as their difference, useful to small
electrical impulse systems. EEG signals are calculated based on personal reference, therefore, they are
not absolute across subjects. Additionally, this data may become too noisy.

3. Results

In order to test the intensity and polarity-dependant effect of HD-tDCS, we designed [11] an
experiment in which we compared the effect Anodal and Cathodal stimulation protocols in different
phases (baseline, 1 mA, 2 mA, and 3 mA). Data was acquired via Electroencephalogram technique,
and then its time series process was summarized using entropy indices.
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The dynamic across the brain network connectivity is a complex phenomenon of substantial
relevance which could help neurologists to understand better some diseases and help on the
development of new treatments. Different brain areas could be compared using complexity as a
measurement among neural network integration.

Our results are divided into two parts. First, we illustrate one single case, to compare brain
regions activation (as channels) using relative entropy, and then we consider the entire dynamic of
the experiment (dose-response versus conditions). Both parts used responses from 51 EEG channels
located over the TPJ cortical region.

3.1. Analyzing Complexity within Channels

We propose an information theoretic approach to neuroscience, with the application of the
Kullback-Leibler divergence and the Approximate Entropy to the analysis of time series. Our goal is
to compare different processes taking into account all their distribution moments (considering much
more than only their average), thus enabling further analysis between neural events [30–33].

To illustrate the previous discussion, let us consider the Kullback-Leibler divergence (KL) between
channels. For simplicity, we examined just a single trial of one participant, giving the possibility to
analyze the process’ synergy difference between the 51 channels located in the central region (left and
right motor brain area). All the analyzes consider the smoothed TS, that is, with one observation point
per the second resolution, with only 300 observations per phase (dose-response).

Let us bear in mind that the KL divergence is not symmetric. To make it asymmetric distance
measure, we use the average shown below,

KLDIST(p, q) =
KL(p, q) + KL(q, p)

2
. (1)

In our case, the probability distributions represent electrical activity from each EEG channel.
In Figure 4, we use the pairwise complexity measurement (1). Due to the imposed symmetry,

it suffices to visualize only the bottom right to perform a comparison among the channels through the
brain hemisphere (25 first channels refer to the left brain side [left motor + left temporal] and right
respectively). The imposed symmetry is particularly crucial because we needed to know if, across
each intervention, there exists a change in the dynamics of system complexity (if one stimulation
region is impacting/connected to another). As well, this helps in describing the activation areas and
its structural relations.

Notice that during baseline state (top left figure), channel 63, placed in the right side motor,
reacted remarkably, as well as channels 77 and 78 with some other channels. Due to the electrical
stimulus at 1mA (top right figure), it is possible to notice some change in the dynamic according to
the stimulation regions: especially channels 181 (stimulation tDCS point), 70 and 74 (the equivalent
points in the other hemisphere) present a larger entropy. In the 2 mA stimulation (bottom left figure),
the activity in channels 182, 70, and 64 (the neighbor of the stimulation tDCS point and the equivalent
points in the other hemisphere) is highlighted. Finally, in the 3 mA (bottom right figure), the channels
182, 69, 64, 70, and 77 are emphasized concerning the others, while channels 71 and 99 also point out,
but present smaller statistics.

Other space reduction approaches are presented in the literature. For instance, space reduction
and concurrent were used to describe the interference effects of transcranial magnetic stimulation (TMS)
on several electroencephalographic (EEG) measures providing causal evidence towards a microstates
modification [34,35]. Moreover, estimated subspaces are created to represent different brain activity
patterns belonging to the dataset. Therefore, this approach enables the comparison between brain
regions in each dose-response, by summarizing its complexity. In the case of a non-stationary process,
the class of entropy must take this fact into account.
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Figure 4. EEG entropy analysis of dose-response are represented by each matrix. Due to the matrix
symmetry, it was considered only the lower triangular part (light gray). The red color scale correlates
the energy dynamics synergy of each EEG channel, being the dark red of greater intensity and the light
of lesser.

3.2. Analyzing Complexity across Dose-Response Effect

Pincus [4] presented the so-called Approximate Entropy (ApEn) as a technique to quantify the
amount of regularity, and the unpredictability of fluctuations, over time-series data not conditional to
its stationarity. This entropy is particularly interesting for this application, given the main questions
are settled discerning about the regularity of the dose-response across the montages. Therefore, aiming
to test the patient response, the entropy approach target is to summarize the comparison towards the
induced neuromodulation, that is, the electrical stimulation.
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Given the presence of repetitive patterns, in a time series, its predictability renders conditionally
to its fluctuation. ApEn can be interpreted as the likelihood that similar patterns of observations will
not be followed by additional similar observations, calculated by

ApEn = Φm(r)−Φm+1(r), where Φm(r) = (N −m + 1)−1
N−m+1

∑
i=1

ln(Cm
i (r))

where N is raw data values from a equally spaced in time, m is the length of compared time-window
data, r is filtering level and Cm

i (r) measures within a tolerance r the regularity of patterns similar to a
given pattern.

In this manner, m = 2 and r = 0.2× sd(TS) were adopted as parameters, and the ApEn was used
to summarize the time series block experimentation and then adjusted a mixed-effect model in other to
verify its similarity. A Time Series which contains many repetitive patterns has a relatively small ApEn;
a less predictable process has a higher ApEn. Figure 5 describes the fluctuations over time-series data
in each stimulation condition.

Figure 5. Each current intensity is related to one condition (Anodal, Cathodal, Sham-Anodal,
Sham-Cathodal). Visually the boxplots seem to present equivalent results among the brain stimulation
conditions also considering the different intensities.

Complementing the descriptive analysis, Table 1 brings the basics statistical descriptive under
the optic of the Approximate Entropy among dose-response within Conditions. It is to be noticed
that both mean and median increased once the stimulus is applied although remaining quite similar
among them, sharing a similar range of standard deviation. One thing we would like to highlight is
that the 3 mA intensity in the Cathodal condition has the smallest maximum ApEn.

The theoretical adopted mixed model is explicit by Equation (2), represented as

YYY = XβXβXβ +ZγZγZγ + εεε (2)

where the YYY is a vector of the ApEn containing 51 channels, per participant, XXX and ZZZ are design matrices,
βββ refers to the fixed-effects related to the intercept, montage (stimulation), intensity and their interaction,
and γγγ is a matrix including the random-effects been channel and condition nested participant.

The number associated with the intention stage (configured by each dose-response—1, 2 and
3 mA) is equivalent to ten periods in total (baseline + 3 replicas of each dose-response). Due to the
number of the condition is three (Anodal, Cathodal, and Sham), per participant which are seven,
then twenty-one obtained trials. All this combination summarizes in a total of 10,710 observations
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(given that a scalar number—ApEn represents each TS). Therefore, the model’s fixed effects were
converted into dummies variables (Stimulations versus Intensity).

Table 1. ApEn summary among Stimulus versus Intensity.

Condition Intensity MEAN SD MIN MEDIAN MAX

Anodal

base 0.365 0.260 0.0064 0.336 1.043

1 mA 0.452 0.280 0.0004 0.486 1.133

2 mA 0.445 0.278 0.0006 0.448 1.115

3 mA 0.444 0.279 0.0006 0.457 1.116

Cathodal

base 0.397 0.284 0.0108 0.359 1.104

1 mA 0.447 0.281 0.0006 0.449 1.101

2 mA 0.433 0.276 0.0006 0.441 1.121

3 mA 0.440 0.273 0.0006 0.445 1.050

Sham

base 0.430 0.283 0.0121 0.418 1.026

1 mA 0.512 0.264 0.0068 0.536 1.150

2 mA 0.514 0.260 0.0005 0.534 1.220

3 mA 0.510 0.259 0.0008 0.532 1.112

According to Table 2, which presents the estimations relating the variances of each random
component, a similar variance among the different stimulation condition is observed conditioned to
the participants (involving personal characteristic).

Table 2. Mixed model—Random effects estimations.

Groups Variance Std.Dev.

Channel (Intercept) 0.0012 0.0348
Key Anodal 0.0119 0.1089

Cathodal 0.0113 0.1063
Sham 0.0165 0.1283

Residual 0.0634 0.2519

Analyzing the estimates associated with the fixed effects (Table 3) and considering a significance
level of 5%, there were differences between the complexity across the current intensity effects (without
discriminating the stimulation condition). No difference was shown across stimulus (regardless of
electrical stimulation) using the Anodal stimulus as a reference to compare the conditions. Then,
observing the iteration among stimulus versus intensity, only Cathodal with 2 mA presented to be
statistically different between condition (Anodal vs. Cathodal).

The method presented here contributes to the findings described by Santos et al. [11] that
described results bypassed through non-parametric techniques considering only channels 164 and 66,
now extended to a larger brain region composed mainly by 51 channels. In the previous work [11],
the Kruskal-Wallis test also revealed intensity-dependent effects on the cathode center condition in the
gamma frequency band, and the Tukey post-hoc test indicated a significant difference between 2 and 3
mA (p = 0.044).
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Table 3. Mixed model—Fixed effects estimations.

Estimate Std. Error t Value p-Value

(Intercept) 0.365 0.044 8.373 5.13× 10−5 ***
INTENSITY 1 mA -Baseline 0.088 0.015 5.706 1.19× 10−8 ***
INTENSITY 2 mA -Baseline 0.080 0.015 5.221 1.82× 10−7 ***
INTENSITY 3 mA -Baseline 0.079 0.015 5.153 2.61× 10−7 ***
CONDITION Sham-Anodal 0.066 0.052 1.266 0.2425

CONDITION Cathodal-Anodal 0.033 0.044 0.735 0.482
INTENSITY 1 mA:Sham-Anodal −0.006 0.022 −0.298 0.7656
INTENSITY 2 mA:Sham-Anodal 0.003 0.022 0.137 0.8913
INTENSITY 3 mA:Sham-Anodal 0.000 0.022 −0.006 0.9951

INTENSITY 1 mA:Cathodal-Anodal −0.038 0.022 −1.730 0.0837 .
INTENSITY 2 mA:Cathodal-Anodal −0.044 0.022 −2.029 0.0425 *
INTENSITY 3 mA:Cathodal-Anodal −0.037 0.022 −1.693 0.0905 .

—Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Furthermore, Table 4 presents the correlation of fixed effects matrix, consider Sham (S), Anodal (A)
and Cathodal (C).

Table 4. Mixed model—Correlation of fixed effects estimations.

(Intr) 1mA 2mA 3mA S:A C:A S:A1mA S:A2mA S:A3mA C:A1mA C:A2mA

1mA −0.265
2mA −0.265 0.750
3mA −0.265 0.750 0.750

S:A −0.461 0.222 0.222 0.22
C:A −0.721 0.260 0.260 0.26 0.535

S:A1mA 0.187 −0.707 −0.530 −0.53 −0.314 −0.184
S:A2mA 0.187 −0.530 −0.707 −0.53 −0.314 −0.184 0.75
S:A3mA 0.187 −0.530 −0.530 −0.707 −0.314 −0.184 0.75 0.75
C:A1mA 0.187 −0.707 −0.530 −0.53 −0.157 −0.368 0.5 0.375 0.375
C:A2mA 0.187 −0.530 −0.707 −0.53 −0.157 −0.368 0.375 0.5 0.375 0.75
C:A3mA 0.187 −0.530 −0.530 −0.707 −0.157 −0.368 0.375 0.375 0.5 0.75 0.75

The present results support the observations of Santos et al. [11], despite the differences between
the analyses, where two (among our 51) channels were considered, and 5 s (against our 5 min) of
post stimulation EEG recording were investigated. The results presented in this subsection agree with
Bikson et al. [36] and Perennou et al. [37], where the importance of a safe protocol is highlighted.

4. Conclusions

This work aimed to present and discuss the use of an appropriate statistic to summarize time series
processes, preserving the information contained therein. Thus, entropy was suggested as a robust
alternative replacing the average since the processes observed in real life do not show stationarity.
In the medical field, traditional statistical models are commonly adopted, which generally depart from
the principle of independence between data, then time series are pre-processed (summarized) in an
attempt to fit data into these types of models.

Entropy is a critical “summary” statistic in nonlinear dynamical systems analysis and chaos.
By using entropy, in the area of neuroscience, it has a straightforward interpretation which is
associated with the energetic dynamics of the process then statistical hypothesis tests comparing
their equivalences. Moreover, in this study, under this approach, we could discuss the feasibility of the
protocol [11], and its safety, towards treatment as a vertical human manipulation task presented in,
e.g., post-stroke patients.

This work is shown the Kullback-Leibler divergence as a space reduction approach, representing
the variation across EEG channels (located in different brain areas), and targeting to explicit the
electrical dynamic from a single participant (in Figure 4). Then, analyzing the entire clinical experiment,
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elucidated by protocol [11], using a nonlinear dynamic analysis through Approximate Entropy and
considering not only two channels (164 and 66), but extending the analysis using all the 51 channels
from a larger cortical region. Moreover, relative direction and structural change with stimulation
intensity towards cathode center condition among the dynamic between baseline and its current
intensities were suggested.

Future studies should explore the time-varying parameters dynamic across stimulus (intensity)
versus conditions (polarity/sham). Other approaches could be further explored adapting different
metrics, such as Mahalanobis or Geodesic distance, in the complexity calculation used in the
approximate entropy measure, as well as incorporate a time-varying filter level parameter.

Author Contributions: D.C.N.: statistical analysis, computational modeling, and interpretation of the data,
and manuscript writing. G.D., L.H.S., O.A. and J.P.L.: interpretation, and critical revision of the manuscript for
intellectual content. D.J.E.: study concept and design of the clinical trial, interpretation of computational modeling,
data analysis and interpretation of the clinical trials and critical revision of the manuscript for intellectual content.
T.E.G.S.: study concept and design of the clinical trial, project management, data acquisition, supervision of the
data analysis, data interpretation, and manuscript writing. F.L.N.: supervision of the statistical analysis and
interpretation of the data, and critical revision of the manuscript for intellectual content. T.E.G.S. and F.L.N.
contributed equally as co-last authors.

Funding: The research was partially supported by CNPq, FAPESP and CAPES from Brazil. Research carried out
using the computational resources of the Center for Mathematical Sciences Applied to Industry (CeMEAI) funded
by FAPESP (grant 2013/07375-0).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Prigogine, I. The meaning of entropy. In Evolutionary Epistemology; Springer: Berlin/Heidelberg, Germany,
1987; pp. 57–73.

2. Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991,
88, 2297–2301. [CrossRef] [PubMed]

3. Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample
entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [CrossRef] [PubMed]

4. Pincus, S.M.; Gladstone, I.M.; Ehrenkranz, R.A. A regularity statistic for medical data analysis. J. Clin. Monit.
1991, 7, 335–345. [CrossRef] [PubMed]

5. Heintzman, N.D.; Hon, G.C.; Hawkins, R.D.; Kheradpour, P.; Stark, A.; Harp, L.F.; Ye, Z.; Lee, L.K.;
Stuart, R.K.; Ching, C.W.; et al. Histone modifications at human enhancers reflect global cell-type-specific
gene expression. Nature 2009, 459, 108. [CrossRef] [PubMed]

6. Yentes, J.M.; Denton, W.; McCamley, J.; Raffalt, P.C.; Schmid, K.K. Effect of parameter selection on entropy
calculation for long walking trials. Gait Posture 2018, 60, 128–134. [CrossRef] [PubMed]

7. Bhogal, A.S.; Mani, A.R. Pattern analysis of oxygen saturation variability in healthy individuals: Entropy
of pulse oximetry signals carries information about mean oxygen saturation. Front. Physiol. 2017, 8, 555.
[CrossRef]

8. Cuesta-Frau, D.; Miró-Martínez, P.; Núñez, J.J.; Oltra-Crespo, S.; Picó, A.M. Noisy EEG signals
classification based on entropy metrics. Performance assessment using first and second generation statistics.
Comput. Biol. Med. 2017, 87, 141–151. [CrossRef] [PubMed]

9. Stam, C.J. Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field. Clin. Neurophysiol.
2005, 116, 2266–2301. [CrossRef]

10. Acharya, U.R.; Hagiwara, Y.; Deshpande, S.N.; Suren, S.; Koh, J.E.W.; Oh, S.L.; Arunkumar, N.; Ciaccio, E.J.;
Lim, C.M. Characterization of focal EEG signals: A review. Future Gener. Comput. Syst. 2018, 91, 290–299.
[CrossRef]

11. Santos, T.E.; Favoretto, D.B.; Toostani, I.G.; Nascimento, D.; Rimoli, B.P.; Bergonzoni, E.; Lemos, T.W.;
Truong, D.Q.; Delbem, A.C.; Makkiabadi, B.; et al. Manipulation of human verticality using high-definition
transcranial direct current stimulation. Front. Neurol. 2018, 9, 825. [CrossRef]

12. Nasseri, P.; Nitsche, M.A.; Ekhtiari, H. A framework for categorizing electrode montages in transcranial
direct current stimulation. Front. Hum. Neurosci. 2015, 9, 54. [CrossRef] [PubMed]

http://dx.doi.org/10.1073/pnas.88.6.2297
http://www.ncbi.nlm.nih.gov/pubmed/11607165
http://dx.doi.org/10.1152/ajpheart.2000.278.6.H2039
http://www.ncbi.nlm.nih.gov/pubmed/10843903
http://dx.doi.org/10.1007/BF01619355
http://www.ncbi.nlm.nih.gov/pubmed/1744678
http://dx.doi.org/10.1038/nature07829
http://www.ncbi.nlm.nih.gov/pubmed/19295514
http://dx.doi.org/10.1016/j.gaitpost.2017.11.023
http://www.ncbi.nlm.nih.gov/pubmed/29202357
http://dx.doi.org/10.3389/fphys.2017.00555
http://dx.doi.org/10.1016/j.compbiomed.2017.05.028
http://www.ncbi.nlm.nih.gov/pubmed/28595129
http://dx.doi.org/10.1016/j.clinph.2005.06.011
http://dx.doi.org/10.1016/j.future.2018.08.044
http://dx.doi.org/10.3389/fneur.2018.00825
http://dx.doi.org/10.3389/fnhum.2015.00054
http://www.ncbi.nlm.nih.gov/pubmed/25705188


Brain Sci. 2019, 9, 208 14 of 15

13. Bikson, M.; Bestmann, S.; Edwards, D. Neuroscience: Transcranial devices are not playthings. Nature 2013,
501, 167. [CrossRef] [PubMed]

14. Nitsche, M.A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial
direct current stimulation. J. Physiol. 2000, 527, 633–639. [CrossRef] [PubMed]

15. Priori, A.; Berardelli, A.; Rona, S.; Accornero, N.; Manfredi, M. Polarization of the human motor cortex
through the scalp. Neuroreport 1998, 9, 2257–2260. [CrossRef] [PubMed]

16. Brunoni, A.R.; Nitsche, M.A.; Bolognini, N.; Bikson, M.; Wagner, T.; Merabet, L.; Edwards, D.J.;
Valero-Cabre, A.; Rotenberg, A.; Pascual-Leone, A.; et al. Clinical research with transcranial direct current
stimulation (tDCS): Challenges and future directions. Brain Stimul. 2012, 5, 175–195. [CrossRef] [PubMed]

17. Lang, N.; Siebner, H.R.; Ward, N.S.; Lee, L.; Nitsche, M.A.; Paulus, W.; Rothwell, J.C.; Lemon, R.N.;
Frackowiak, R.S. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal
activity in the human brain? Eur. J. Neurosci. 2005, 22, 495–504. [CrossRef] [PubMed]

18. Siebner, H.; Peller, M.; Willoch, F.; Minoshima, S.; Boecker, H.; Auer, C.; Drzezga, A.; Conrad, B.; Bartenstein, P.
Lasting cortical activation after repetitive TMS of the motor cortex: a glucose metabolic study. Neurology
2000, 54, 956–963. [CrossRef] [PubMed]

19. Lee, L.; Siebner, H.R.; Rowe, J.B.; Rizzo, V.; Rothwell, J.C.; Frackowiak, R.S.; Friston, K.J. Acute remapping
within the motor system induced by low-frequency repetitive transcranial magnetic stimulation. J. Neurosci.
2003, 23, 5308–5318. [CrossRef] [PubMed]

20. Gilio, F.; Rizzo, V.; Siebner, H.R.; Rothwell, J.C. Effects on the right motor hand-area excitability produced by
low-frequency rTMS over human contralateral homologous cortex. J. Physiol. 2003, 551, 563–573. [CrossRef]
[PubMed]

21. Plewnia, C.; Lotze, M.; Gerloff, C. Disinhibition of the contralateral motor cortex by low-frequency rTMS.
Neuroreport 2003, 14, 609–612. [CrossRef]

22. Rossini, P.M.; Rossi, S. Transcranial magnetic stimulation Diagnostic, therapeutic, and research potential.
Neurology 2007, 68, 484–488. [CrossRef] [PubMed]

23. Rossi, S.; Hallett, M.; Rossini, P.M.; Pascual-Leone, A. Safety, ethical considerations, and application
guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol.
2009, 120, 2008–2039. [CrossRef] [PubMed]

24. Bashir, S.; Mizrahi, I.; Weaver, K.; Fregni, F.; Pascual-Leone, A. Assessment and modulation of neural
plasticity in rehabilitation with transcranial magnetic stimulation. PM&R 2010, 2, S253–S268.

25. Siebner, H.R.; Hartwigsen, G.; Kassuba, T.; Rothwell, J.C. How does transcranial magnetic stimulation
modify neuronal activity in the brain? Implications for studies of cognition. Cortex 2009, 45, 1035–1042.
[CrossRef] [PubMed]

26. Khedr, E.M.; Gamal, N.F.E.; El-Fetoh, N.A.; Khalifa, H.; Ahmed, E.M.; Ali, A.M.; Noaman, M.; El-Baki, A.A.;
Karim, A.A. A double-blind randomized clinical trial on the efficacy of cortical direct current stimulation for
the treatment of Alzheimer’s disease. Front. Aging Neurosci. 2014, 6, 275. [CrossRef] [PubMed]

27. Babyar, S.; Santos-Pontelli, T.; Will-Lemos, T.; Mazin, S.; Bikson, M.; Truong, D.Q.; Edwards, D.; Reding, M.
Center of Pressure Speed Changes with tDCS Versus GVS in Patients with Lateropulsion after Stroke.
Brain Stimul. Basic Transl. Clin. Res. Neuromodul. 2016, 9, 796–798. [CrossRef] [PubMed]

28. Zhou, J.; Hao, Y.; Wang, Y.; Jor’dan, A.; Pascual-Leone, A.; Zhang, J.; Fang, J.; Manor, B. Transcranial
direct current stimulation reduces the cost of performing a cognitive task on gait and postural control.
Eur. J. Neurosci. 2014, 39, 1343–1348. [CrossRef]

29. McMillan, B. The basic theorems of information theory. Ann. Math. Stat. 1953, 24, 196–219. [CrossRef]
30. Pérez-Cruz, F. Kullback-Leibler divergence estimation of continuous distributions. In Proceedings of

the 2008 IEEE International Symposium on Information Theory, Toronto, ON, Canada , 6–11 July 2008;
pp. 1666–1670.

31. Chiang, M.C.; Klunder, A.D.; McMahon, K.; De Zubicaray, G.I.; Wright, M.J.; Toga, A.W.; Thompson, P.M.
Information-theoretic analysis of brain white matter fiber orientation distribution functions. In Biennial
International Conference on Information Processing in Medical Imaging; Springer: Berlin/Heidelberg, Germany,
2007; pp. 172–182.

32. Joshi, S.H.; Bowman, I.; Toga, A.W.; Van Horn, J.D. Brain pattern analysis of cortical valued distributions.
In Proceedings of the 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro,
Chicago, IL, USA, 30 March–2 April 2011; p. 1117.

http://dx.doi.org/10.1038/501167b
http://www.ncbi.nlm.nih.gov/pubmed/24025832
http://dx.doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x
http://www.ncbi.nlm.nih.gov/pubmed/10990547
http://dx.doi.org/10.1097/00001756-199807130-00020
http://www.ncbi.nlm.nih.gov/pubmed/9694210
http://dx.doi.org/10.1016/j.brs.2011.03.002
http://www.ncbi.nlm.nih.gov/pubmed/22037126
http://dx.doi.org/10.1111/j.1460-9568.2005.04233.x
http://www.ncbi.nlm.nih.gov/pubmed/16045502
http://dx.doi.org/10.1212/WNL.54.4.956
http://www.ncbi.nlm.nih.gov/pubmed/10690992
http://dx.doi.org/10.1523/JNEUROSCI.23-12-05308.2003
http://www.ncbi.nlm.nih.gov/pubmed/12832556
http://dx.doi.org/10.1113/jphysiol.2003.044313
http://www.ncbi.nlm.nih.gov/pubmed/12821724
http://dx.doi.org/10.1097/00001756-200303240-00017
http://dx.doi.org/10.1212/01.wnl.0000250268.13789.b2
http://www.ncbi.nlm.nih.gov/pubmed/17296913
http://dx.doi.org/10.1016/j.clinph.2009.08.016
http://www.ncbi.nlm.nih.gov/pubmed/19833552
http://dx.doi.org/10.1016/j.cortex.2009.02.007
http://www.ncbi.nlm.nih.gov/pubmed/19371866
http://dx.doi.org/10.3389/fnagi.2014.00275
http://www.ncbi.nlm.nih.gov/pubmed/25346688
http://dx.doi.org/10.1016/j.brs.2016.06.053
http://www.ncbi.nlm.nih.gov/pubmed/27372843
http://dx.doi.org/10.1111/ejn.12492
http://dx.doi.org/10.1214/aoms/1177729028


Brain Sci. 2019, 9, 208 15 of 15

33. Afgani, M.; Sinanovic, S.; Haas, H. Anomaly detection using the Kullback-Leibler divergence metric.
In Proceedings of the 2008 First International Symposium on Applied Sciences on Biomedical and
Communication Technologies, Aalborg, Denmark, 25–28 Octorber 2008; pp. 1–5.

34. Croce, P.; Zappasodi, F.; Capotosto, P. Offline stimulation of human parietal cortex differently affects resting
EEG microstates. Sci. Rep. 2018, 8, 1287. [CrossRef]

35. Croce, P.; Zappasodi, F.; Spadone, S.; Capotosto, P. Magnetic stimulation selectively affects pre-stimulus
EEG microstates. NeuroImage 2018, 176, 239–245. [CrossRef]

36. Bikson, M.; Grossman, P.; Thomas, C.; Zannou, A.L.; Jiang, J.; Adnan, T.; Mourdoukoutas, A.P.; Kronberg, G.;
Truong, D.; Boggio, P.; et al. Safety of transcranial direct current stimulation: Evidence based update 2016.
Brain Stimul. Basic Transl. Clin. Res. Neuromodul. 2016, 9, 641–661. [CrossRef] [PubMed]

37. Pérennou, D. Postural disorders and spatial neglect in stroke patients: A strong association.
Restor. Neurol. Neurosci. 2006, 24, 319–334. [PubMed]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/s41598-018-19698-z
http://dx.doi.org/10.1016/j.neuroimage.2018.04.061
http://dx.doi.org/10.1016/j.brs.2016.06.004
http://www.ncbi.nlm.nih.gov/pubmed/27372845
http://www.ncbi.nlm.nih.gov/pubmed/17119307
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Entropy analysis of high-definition transcranial electric stimulation effects on EEG dynamics
	Authors

	Introduction
	Methods
	Overview
	Background Theory
	Transcranial Direct Current Electrical Stimulation
	Stimulation Protocol
	Entropy Background

	Simulation

	Results
	Analyzing Complexity within Channels
	Analyzing Complexity across Dose-Response Effect

	Conclusions
	References

