200 research outputs found

    Genomic Plasticity of Vibrio cholerae

    Get PDF
    Vibrio cholerae is one of the deadliest pathogens in the history of humankind. It is the causative agent of cholera, adisease characterized by a profuse and watery diarrhoea that still today causes 95.000 deaths worldwide every year. V. choleraeis a free living marine organism that interacts with and infects a variety of organisms, from amoeba to humans, including insectsand crustaceans. The complexity of the lifestyle and ecology of V. cholerae suggests a high genetic and phenotypic plasticity. Inthis review, we will focus on two peculiar genomic features that enhance genetic plasticity in this bacterium: the division of itsgenome in two different chromosomes and the presence of the superintegron, a gene capture device that acts as a large, low-costmemory of adaptive functions, allowing V. cholerae to adapt rapidly

    Identification of key structural determinants of the IntI1 integron integrase that influence attC × attI1 recombination efficiency

    Get PDF
    The integron platform codes for an integrase (IntI) from the tyrosine family of recombinases that mediates recombination between a proximal double-strand recombination site, attI and a single-strand target recombination site, attC. The attI site is only recognized by its cognate integrase, while the various tested attCs sites are recombined by several different IntI integrases. We have developed a genetic system to enrich and select mutants of IntI1 that provide a higher yield of recombination in order to identify key protein structural elements important for attC × attI1 recombination. We isolated mutants with higher activity on wild type and mutant attC sites. Interestingly, three out of four characterized IntI1 mutants selected on different substrates are mutants of the conserved aspartic acid in position 161. The IntI1 model we made based on the VchIntIA 3D structure suggests that substitution at this position, which plays a central role in multimer assembly, can increase or decrease the stability of the complex and accordingly influence the rate of attI × attC recombination versus attC × attC. These results suggest that there is a balance between the specificity of the protein and the protein/protein interactions in the recombination synapse

    Genomic Plasticity of Vibrio cholerae.

    Get PDF
    Vibrio cholerae is one of the deadliest pathogens in the history of humankind. It is the causative agent of cholera, a disease characterized by a profuse and watery diarrhoea that still today causes 95.000 deaths worldwide every year. V. cholerae is a free living marine organism that interacts with and infects a variety of organisms, from amoeba to humans, including insects and crustaceans. The complexity of the lifestyle and ecology of V. cholerae suggests a high genetic and phenotypic plasticity. In this review, we will focus on two peculiar genomic features that enhance genetic plasticity in this bacterium: the division of its genome in two different chromosomes and the presence of the superintegron, a gene capture device that acts as a large, low-cost memory of adaptive functions, allowing V. cholerae to adapt rapidly

    A Natural System of Chromosome Transfer in Yersinia pseudotuberculosis

    Get PDF
    The High Pathogenicity Island of Yersinia pseudotuberculosis IP32637 was previously shown to be horizontally transferable as part of a large chromosomal segment. We demonstrate here that at low temperature other chromosomal loci, as well as a non-mobilizable plasmid (pUC4K), are also transferable. This transfer, designated GDT4 (Generalized DNA Transfer at 4°C), required the presence of an IP32637 endogenous plasmid (pGDT4) that carries several mobile genetic elements and a conjugation machinery. We established that cure of this plasmid or inactivation of its sex pilus fully abrogates this process. Analysis of the mobilized pUC4K recovered from transconjugants revealed the insertion of one of the pGDT4–borne ISs, designated ISYps1, at different sites on the transferred plasmid molecules. This IS belongs to the IS6 family, which moves by replicative transposition, and thus could drive the formation of cointegrates between pGDT4 and the host chromosome and could mediate the transfer of chromosomal regions in an Hfr-like manner. In support of this model, we show that a suicide plasmid carrying ISYps1 is able to integrate itself, flanked by ISYps1 copies, at multiple locations into the Escherichia coli chromosome. Furthermore, we demonstrate the formation of RecA-independent cointegrates between the ISYps1-harboring plasmid and an ISYps1-free replicon, leading to the passive transfer of the non-conjugative plasmid. We thus demonstrate here a natural mechanism of horizontal gene exchange, which is less constrained and more powerful than the classical Hfr mechanism, as it only requires the presence of an IS6-type element on a conjugative replicon to drive the horizontal transfer of any large block of plasmid or chromosomal DNA. This natural mechanism of chromosome transfer, which occurs under conditions mimicking those found in the environment, may thus play a significant role in bacterial evolution, pathogenesis, and adaptation to new ecological niches

    Metagenomic strategies identify diverse integron-integrase and antibiotic resistance genes in the Antarctic environment

    Get PDF
    The objective of this study is to identify and analyze integrons and antibiotic resistance genes (ARGs) in samples collected from diverse sites in terrestrial Antarctica. Integrons were studied using two independent methods. One involved the construction and analysis of intI gene amplicon libraries. In addition, we sequenced 17 metagenomes of microbial mats and soil by high-throughput sequencing and analyzed these data using the IntegronFinder program. As expected, the metagenomic analysis allowed for the identification of novel predicted intI integrases and gene cassettes (GCs), which mostly encode unknown functions. However, some intI genes are similar to sequences previously identified by amplicon library analysis in soil samples collected from non-Antarctic sites. ARGs were analyzed in the metagenomes using ABRIcate with CARD database and verified if these genes could be classified as GCs by IntegronFinder. We identified 53 ARGs in 15 metagenomes, but only four were classified as GCs, one in MTG12 metagenome (Continental Antarctica), encoding an aminoglycoside-modifying enzyme (AAC(6´)acetyltransferase) and the other three in CS1 metagenome (Maritime Antarctica). One of these genes encodes a class D β-lactamase (blaOXA-205) and the other two are located in the same contig. One is part of a gene encoding the first 76 amino acids of aminoglycoside adenyltransferase (aadA6), and the other is a qacG2 gene.Fil: Antelo, Verónica. Instituto de Investigaciones Biológicas "Clemente Estable"; UruguayFil: Giménez, Matías. Instituto de Investigaciones Biológicas "Clemente Estable"; UruguayFil: Azziz, Gastón. Universidad de la Republica. Facultad de Agricultura; UruguayFil: Valdespino Castillo, Patricia. Lawrence Berkeley National Laboratory; Estados UnidosFil: Falcón, Luisa I.. Universidad Nacional Autónoma de México; MéxicoFil: Ruberto, Lucas Adolfo Mauro. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: MacCormack, Walter P.. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Mazel, Didier. Institut Pasteur de Paris.; FranciaFil: Batista, Silvia. Instituto de Investigaciones Biológicas "Clemente Estable"; Urugua

    A checkpoint control orchestrates the replication of the two chromosomes of Vibrio cholerae

    Get PDF
    International audienceBacteria with multiple chromosomes represent up to 10% of all bacterial species. Unlike eukaryotes, these bacteria use chromosome-specific initiators for their replication. In all cases investigated, the machineries for secondary chromosome replication initiation are of plasmid origin. One of the important differences between plasmids and chromosomes is that the latter replicate during a defined period of the cell cycle, ensuring a single round of replication per cell. Vibrio cholerae carries two circular chromosomes, Chr1 and Chr2, which are replicated in a well-orchestrated manner with the cell cycle and coordinated in such a way that replication termination occurs at the same time. However, the mechanism coordinating this synchrony remains speculative. We investigated this mechanism and revealed that initiation of Chr2 replication is triggered by the replication of a 150-bp locus positioned on Chr1, called crtS. This crtS replication-mediated Chr2 replication initiation mechanism explains how the two chromosomes communicate to coordinate their replication. Our study reveals a new checkpoint control mechanism in bacteria, and highlights possible functional interactions mediated by contacts between two chromosomes, an unprecedented observation in bacteria

    Prevalence of SOS-mediated control of integron integrase expression as an adaptive trait of chromosomal and mobile integrons

    Get PDF
    Background: Integrons are found in hundreds of environmental bacterial species, but are mainly known as the agents responsible for the capture and spread of antibiotic-resistance determinants between Gram-negative pathogens. The SOS response is a regulatory network under control of the repressor protein LexA targeted at addressing DNA damage, thus promoting genetic variation in times of stress. We recently reported a direct link between the SOS response and the expression of integron integrases in Vibrio cholerae and a plasmid-borne class 1 mobile integron. SOS regulation enhances cassette swapping and capture in stressful conditions, while freezing the integron in steady environments. We conducted a systematic study of available integron integrase promoter sequences to analyze the extent of this relationship across the Bacteria domain. Results: Our results showed that LexA controls the expression of a large fraction of integron integrases by binding to Escherichia coli-like LexA binding sites. In addition, the results provide experimental validation of LexA control of the integrase gene for another Vibrio chromosomal integron and for a multiresistance plasmid harboring two integrons. There was a significant correlation between lack of LexA control and predicted inactivation of integrase genes, even though experimental evidence also indicates that LexA regulation may be lost to enhance expression of integron cassettes. Conclusions: Ancestral-state reconstruction on an integron integrase phylogeny led us to conclude that the ancestral integron was already regulated by LexA. The data also indicated that SOS regulation has been actively preserved in mobile integrons and large chromosomal integrons, suggesting that unregulated integrase activity is selected against. Nonetheless, additional adaptations have probably arisen to cope with unregulated integrase activity. Identifying them may be fundamental in deciphering the uneven distribution of integrons in the Bacteria domain

    The synthetic integron: an in vivo genetic shuffling device

    Get PDF
    As the field of synthetic biology expands, strategies and tools for the rapid construction of new biochemical pathways will become increasingly valuable. Purely rational design of complex biological pathways is inherently limited by the current state of our knowledge. Selection of optimal arrangements of genetic elements from randomized libraries may well be a useful approach for successful engineering. Here, we propose the construction and optimization of metabolic pathways using the inherent gene shuffling activity of a natural bacterial site-specific recombination system, the integron. As a proof of principle, we constructed and optimized a functional tryptophan biosynthetic operon in Escherichia coli. The trpA-E genes along with ‘regulatory’ elements were delivered as individual recombination cassettes in a synthetic integron platform. Integrase-mediated recombination generated thousands of genetic combinations overnight. We were able to isolate a large number of arrangements displaying varying fitness and tryptophan production capacities. Several assemblages required as many as six recombination events and produced as much as 11-fold more tryptophan than the natural gene order in the same context

    Recoding of synonymous genes to expand evolutionary landscapes requires control of secondary structure affecting translation

    Get PDF
    Synthetic DNA design needs to harness the many information layers embedded in a DNA string. We previously developed the Evolutionary Landscape Painter (ELP), an algorithm that exploits the degeneracy of the code to increase protein evolvability. Here, we have used ELP to recode the integron integrase gene (intI1) in two alternative alleles. Although synonymous, both alleles yielded less IntI1 protein and were less active in recombination assays than intI1. We spliced the three alleles and mapped the activity decrease to the beginning of alternative sequences. Mfold predicted the presence of more stable secondary structures in the alternative genes. Using synonymous mutations, we decreased their stability and recovered full activity. Following a design-build-test approach, we have now updated ELP to consider such structures and provide streamlined alternative sequences. Our results support the possibility of modulating gene activity through the ad hoc design of 5′ secondary structures in synthetic genes

    Primary and promiscuous functions coexist during evolutionary innovation through whole protein domain acquisitions

    Get PDF
    Molecular examples of evolutionary innovation are scarce and generally involve point mutations. Innovation can occur through larger rearrangements, but here experimental data is extremely limited. Integron integrases innovated from double-strand- toward single-strand-DNA recombination through the acquisition of the I2 a-helix. To investigate how this transition was possible, we have evolved integrase IntI1 to what should correspond to an early innovation state by selecting for its ancestral activity. Using synonymous alleles to enlarge sequence space exploration, we have retrieved 13 mutations affecting both I2 and the multimerization domains of IntI1. We circumvented epistasis constraints among them using a combinatorial library that revealed their individual and collective fitness effects. We obtained up to 104 -fold increases in ancestral activity with various asymmetrical trade-offs in single-strand-DNA recombination. We show that high levels of primary and promiscuous functions could have initially coexisted following I2 acquisition, paving the way for a gradual evolution toward innovation
    corecore