23 research outputs found

    Phytoliths as a tool for investigations of agricultural origins and dispersals around the world

    Get PDF
    Agricultural origins and dispersals are subjects of fundamental importance to archaeology as well as many other scholarly disciplines. These investigations are world-wide in scope and require significant amounts of paleobotanical data attesting to the exploitation of wild progenitors of crop plants and subsequent domestication and spread. Accordingly, for the past few decades the development of methods for identifying the remains of wild and domesticated plant species has been a focus of paleo-ethnobotany. Phytolith analysis has increasingly taken its place as an important independent contributor of data in all areas of the globe, and the volume of literature on the subject is now both very substantial and disseminated in a range of international journals. In this paper, experts who have carried out the hands-on work review the utility and importance of phytolith analysis in documenting the domestication and dispersals of crop plants around the world. It will serve as an important resource both to paleo-ethnobotanists and other scholars interested in the development and spread of agriculture

    Organic residues in archaeology - the highs and lows of recent research

    Get PDF
    YesThe analysis of organic residues from archaeological materials has become increasingly important to our understanding of ancient diet, trade and technology. Residues from diverse contexts have been retrieved and analysed from the remains of food, medicine and cosmetics to hafting material on stone arrowheads, pitch and tar from shipwrecks, and ancient manure from soils. Research has brought many advances in our understanding of archaeological, organic residues over the past two decades. Some have enabled very specific and detailed interpretations of materials preserved in the archaeological record. However there are still areas where we know very little, like the mechanisms at work during the formation and preservation of residues, and areas where each advance produces more questions rather than answers, as in the identification of degraded fats. This chapter will discuss some of the significant achievements in the field over the past decade and the ongoing challenges for research in this area.Full text was made available in the Repository on 15th Oct 2015, at the end of the publisher's embargo period

    Spatially structured genetic diversity of the Amerindian yam (Dioscorea trifida L.) assessed by SSR and ISSR markers in Southern Brazil

    Full text link
    Dioscorea trifida L. (Dioscoreaceae) is among the economically most important cultivated Amerindian yam species, whose origin and domestication are still unresolved issues. in order to estimate the genetic diversity maintained by traditional farmers in Brazil, 53 accessions of D. trifida from 11 municipalities in the states of São Paulo, Santa Catarina, Mato Grosso and Amazonas were characterized on the basis of eight Simple Sequence Repeats (SSR) and 16 Inter Simple Sequence Repeats (ISSR) markers. the level of polymorphism among the accessions was high, 95 % for SSR and 75.8 % for ISSR. the SSR marker showed higher discrimination power among accessions compared to ISSR, with D parameter values of 0.79 and 0.44, respectively. Although SSR and ISSR markers led to dendrograms with different topologies, both separated the accessions into three main groups: I-Ubatuba-SP; II-Iguape-SP and Santa Catarina; and III-Mato Grosso. the accessions from Amazonas State were classified in group II with SSR and in a separate group with ISSR. Bayesian and principal coordinate analyzes conducted with both molecular markers corroborated the classification into three main groups. Higher variation was found within groups in the AMOVA analysis for both markers (66.5 and 60.6 % for ISSR and SSR, respectively), and higher Shannon diversity index was found for group II with SSR. Significant but low correlations were found between genetic and geographic distances (r = 0.08; p = 0.0007 for SSR and r = 0.16; p = 0.0002 for ISSR). Therefore, results from both markers showed a slight spatially structured genetic diversity in D. trifida accessions maintained by small traditional farmers in Brazil.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ São Paulo, Luiz de Queiroz Coll Agr, Dept Genet, BR-13400970 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Biol Sci, BR-09972270 São Paulo, BrazilUniv Calif Davis, Dept Plant Sci MS1, Sect Crop & Ecosyst Sci, Davis, CA 95616 USAUniversidade Federal de São Paulo, Dept Biol Sci, BR-09972270 São Paulo, BrazilFAPESP: 2007/04805-2Web of Scienc

    Phytoliths as a tool for investigations of agricultural origins and dispersals around the world

    No full text
    Agricultural origins and dispersals are subjects of fundamental importance to archaeology as well as many other scholarly disciplines. These investigations are world-wide in scope and require significant amounts of paleobotanical data attesting to the exploitation of wild progenitors of crop plants and subsequent domestication and spread. Accordingly, for the past few decades the development of methods for identifying the remains of wild and domesticated plant species has been a focus of paleo-ethnobotany. Phytolith analysis has increasingly taken its place as an important independent contributor of data in all areas of the globe, and the volume of literature on the subject is now both very substantial and disseminated in a range of international journals. In this paper, experts who have carried out the hands-on work review the utility and importance of phytolith analysis in documenting the domestication and dispersals of crop plants around the world. It will serve as an important resource both to paleo-ethnobotanists and other scholars interested in the development and spread of agriculture.Peer Reviewe

    The legacy of 4,500 years of polyculture agroforestry in the eastern Amazon

    Get PDF
    The legacy of pre-Columbian land use in the Amazonian rainforest is one of the most controversial topics in the social1–10 and natural sciences11,12. Until now, the debate has been limited to discipline-specific studies, based purely on archaeological data8, modern vegetation13, modern ethnographic data3 or a limited integration of archaeological and palaeoecological data12. The lack of integrated studies to connect past land use with modern vegetation has left questions about the legacy of pre-Columbian land use on the modern vegetation composition in the Amazon, unanswered11. Here, we show that persistent anthropogenic landscapes for the past 4,500 years have had an enduring legacy on the hyperdominance of edible plants in modern forests in the eastern Amazon. We found an abrupt enrichment of edible plant species in fossil lake and terrestrial records associated with pre-Columbian occupation. Our results demonstrate that, through closed-canopy forest enrichment, limited clearing for crop cultivation and low-severity fire management, long-term food security was attained despite climate and social changes. Our results suggest that, in the eastern Amazon, the subsistence basis for the development of complex societies began ~4,500 years ago with the adoption of polyculture agroforestry, combining the cultivation of multiple annual crops with the progressive enrichment of edible forest species and the exploitation of aquatic resources. This subsistence strategy intensified with the later development of Amazonian dark earths, enabling the expansion of maize cultivation to the Belterra Plateau, providing a food production system that sustained growing human populations in the eastern Amazon. Furthermore, these millennial-scale polyculture agroforestry systems have an enduring legacy on the hyperdominance of edible plants in modern forests in the eastern Amazon. Together, our data provide a long-term example of past anthropogenic land use that can inform management and conservation efforts in modern Amazonian ecosystems. © 2018, The Author(s)
    corecore