167 research outputs found

    Intravitreal S100B Injection Leads to Progressive Glaucoma Like Damage in Retina and Optic Nerve

    Get PDF
    The glial protein S100B, which belongs to a calcium binding protein family, is up-regulated in neurological diseases, like multiple sclerosis or glaucoma. In previous studies, S100B immunization led to retinal ganglion cell (RGC) loss in an experimental autoimmune glaucoma (EAG) model. Now, the direct degenerative impact of S100B on the retina and optic nerve was evaluated. Therefore, 2 ÎŒl of S100B was intravitreally injected in two concentrations (0.2 and 0.5 ÎŒg/ÎŒl). At day 3, 14 and 21, retinal neurons, such as RGCs, amacrine and bipolar cells, as well as apoptotic mechanisms were analyzed. Furthermore, neurofilaments, myelin fibers and axons of optic nerves were evaluated. In addition, retinal function and immunoglobulin G (IgG) level in the serum were measured. At day 3, RGCs were unaffected in the S100B groups, when compared to the PBS group. Later, at days 14 and 21, the RGC number as well as the ÎČ-III tubulin protein level was reduced in the S100B groups. Only at day 14, active apoptotic mechanisms were noted. The number of amacrine cells was first affected at day 21, while the bipolar cell amount remained comparable to the PBS group. Also, the optic nerve neurofilament structure was damaged from day 3 on. At day 14, numerous swollen axons were observed. The intraocular injection of S100B is a new model for a glaucoma like degeneration. Although the application site was the eye, the optic nerve degenerated first, already at day 3. From day 14 on, retinal damage and loss of function was noted. The RGCs in the middle part of the retina were first affected. At day 21, the damage expanded and RGCs had degenerated in all areas of the retina as well as amacrine cells. Furthermore, elevated IgG levels in the serum were measured at day 21, which could be a sign of a late and S100B independet immune response. In summary, S100B had a direct destroying impact on the axons of the optic nerve. The damage of the retinal cell bodies seems to be a consequence of this axon loss

    Metatranscriptomic Analyses of Diel Metabolic Functions During a Microcystis Bloom in Western Lake Erie (United States)

    Get PDF
    This study examined diel shifts in metabolic functions of spp. during a 48-h Lagrangian survey of a toxin-producing cyanobacterial bloom in western Lake Erie in the aftermath of the 2014 Toledo Water Crisis. Transcripts mapped to the genomes of recently sequenced lower Great Lakes isolates showed distinct patterns of gene expression between samples collected across day (10:00 h, 16:00 h) and night (22:00 h, 04:00 h). Daytime transcripts were enriched in functions related to Photosystem II (e.g., ), nitrogen and phosphate acquisition, cell division (), heat shock response (, ), and uptake of inorganic carbon (, ). Genes transcribed during nighttime included those involved in phycobilisome protein synthesis and Photosystem I core subunits. Hierarchical clustering and principal component analysis (PCA) showed a tightly clustered group of nighttime expressed genes, whereas daytime transcripts were separated from each other over the 48-h duration. Lack of uniform clustering within the daytime transcripts suggested that the partitioning of gene expression in is dependent on both circadian regulation and physicochemical changes within the environment

    A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions

    Get PDF
    Conservation agriculture involves reduced tillage, permanent soil cover and crop rotations to enhance soil fertility and to supply food from a dwindling land resource. Recently, conservation agriculture has been promoted in Southern Africa, mainly for maize-based farming systems. However, maize yields under rain-fed conditions are often variable. There is therefore a need to identify factors that influence crop yield under conservation agriculture and rain-fed conditions. Here, we studied maize grain yield data from experiments lasting 5 years and more under rain-fed conditions. We assessed the effect of long-term tillage and residue retention on maize grain yield under contrasting soil textures, nitrogen input and climate. Yield variability was measured by stability analysis. Our results show an increase in maize yield over time with conservation agriculture practices that include rotation and high input use in low rainfall areas. But we observed no difference in system stability under those conditions. We observed a strong relationship between maize grain yield and annual rainfall. Our meta-analysis gave the following findings: (1) 92% of the data show that mulch cover in high rainfall areas leads to lower yields due to waterlogging; (2) 85% of data show that soil texture is important in the temporal development of conservation agriculture effects, improved yields are likely on well-drained soils; (3) 73% of the data show that conservation agriculture practices require high inputs especially N for improved yield; (4) 63% of data show that increased yields are obtained with rotation but calculations often do not include the variations in rainfall within and between seasons; (5) 56% of the data show that reduced tillage with no mulch cover leads to lower yields in semi-arid areas; and (6) when adequate fertiliser is available, rainfall is the most important determinant of yield in southern Africa. It is clear from our results that conservation agriculture needs to be targeted and adapted to specific biophysical conditions for improved impact

    On the pulmonary toxicity of oxygen. 5. Electronic structure and the paramagnetic property of oxygen

    Get PDF
    Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Experimental and Molecular Pathology 93 (2012): 365-377, doi:10.1016/j.yexmp.2012.08.007.Oxygen uptake by the pulmonary circulation is a chemical reaction. The physicochemical attributesof oxygen are critical when studying pulmonary oxygen toxicity. Extent of lung injury depends onthe percentage of oxygen in an oxygen:nitrogen mix in polybaric circumstances (Shanklin, 1969). Further change in extent of lesion follows when other gases are used in the inhalant mix instead of nitrogen (Shanklin and Lester, 1972), with oxygen at 21-100% of the mix. Comparative subatmospheric oxygen levels down to 3% in hydrogen, helium, nitrogen, argon, or sulfurhexafluoride, were run with and without ventilatory distress by the Farber (1937) model, bilateralcervical vagotomy (BCV). This yielded coherent results indicating a need to consider molecular characteristics at the atomic level. Molecular mass and size, gas viscosity, and thermal conductivity yielded no obvious correlates to lung injury. Saturation of the outer electron shells of the diluents fit the empiric data, prospectively an interaction between oxygen and nitrogen from their electronegativity and closely approximate molecular mass, size, and shape. The lesion is essentially eliminated at 7% oxygen in nitrogen. At 3% oxygen, the least lesion is found with N2, H2, and SF6,all gases with incomplete outer electron shells, allowing for transient, possibly polarized, covalent bonding with oxygen as the significant minority component in the mix. Argon and helium do not interfere with oxygen. With 3% oxygen in argon without BCV, the experiments ran so long (>70hours) they were terminated once the point had been made. 3% oxygen in argon after BCV yielded a mean survival more than twice that of BCV in air, indicating a remarkable degree of nitrogen interference with oxygen in the respiratory medium of terrestrial animal life. Argon displayed other advantages for the lung compared to nitrogen. Hydrogen, nitrogen, and oxygen are diatomic molecules, a feature which does relate to the extent of lung injury, but only oxygen is paramagnetic. Magnetic effects on lesion formation were tested: [1] with ventilatory distress induced in newbornrabbits, and [2] in young adult female white mice exposed to 100% oxygen without addedmechanical distress. A noninvasive model for ventilatory distress, thoracic restraint (TR), withlonger mean survivals of 40-50 hours, was employed rather than the Farber model. Parallel runs with TR, one subset receiving 100% oxygen in a plastic chamber resting on six strong ring magnetswith measured fields up to +1200 gauss, the other plain 100% oxygen, were performed. Bothsubsets developed moderate metabolic acidosis with average weight losses circa 25%, but over different time courses, 82.89 ± 4.91 hours in magnetized oxygen, 55.4 per cent longer than the 53.34 ± 9.82 hours in plain oxygen ( p <0.001). The longer survival in magnetized oxygen meant extensive lung injury (99.57 ± 0.42% pleural surface, versus 83.86 ± 14.03%), but the rate of lesionformation was 30.89 per cent faster in plain oxygen (1.5722% per hour) than in magnetized oxygen(1.2012% per hour), a difference significant at p <0.001. The effect of oxygen without mechanical ventilatory distress was examined in female adult whitemice exposed to oxygen or magnetized oxygen. Similar survivals and weight losses were achieved. The rate of lung lesion formation was different, 1.2617% per hour in plain oxygen, 46.13 per centfaster than 0.8634% per hour in magnetized oxygen. A variable magnetic field, with animals moving and breathing in chambers flooded with oxygen, has both systemic and pulmonary effectswhich alter the rate of lesion formation due to oxygen toxicity. Paramagnetic oxygen in a magneticfield influences the effect of oxygen toxicity on the lung but at these strengths of field it does notovercome significant mechanical disturbance

    Persistent Cellular Motion Control and Trapping Using Mechanotactic Signaling

    Get PDF
    Chemotactic signaling and the associated directed cell migration have been extensively studied owing to their importance in emergent processes of cellular aggregation. In contrast, mechanotactic signaling has been relatively overlooked despite its potential for unique ways to artificially signal cells with the aim to effectively gain control over their motile behavior. The possibility of mimicking cellular mechanotactic signals offers a fascinating novel strategy to achieve targeted cell delivery for in vitro tissue growth if proven to be effective with mammalian cells. Using (i) optimal level of extracellular calcium ([Ca2[superscript +] ][subscript ext] = 3 mM) we found, (ii) controllable fluid shear stress of low magnitude (σ < 0.5 Pa), and (iii) the ability to swiftly reverse flow direction (within one second), we are able to successfully signal Dictyostelium discoideum amoebae and trigger migratory responses with heretofore unreported control and precision. Specifically, we are able to systematically determine the mechanical input signal required to achieve any predetermined sequences of steps including straightforward motion, reversal and trapping. The mechanotactic cellular trapping is achieved for the first time and is associated with a stalling frequency of 0.06 ~ 0.1 Hz for a reversing direction mechanostimulus, above which the cells are effectively trapped while maintaining a high level of directional sensing. The value of this frequency is very close to the stalling frequency recently reported for chemotactic cell trapping [Meier B, et al. (2011) Proc Natl Acad Sci USA 108:11417–11422], suggesting that the limiting factor may be the slowness of the internal chemically-based motility apparatus.SUTD-MIT International Design Centre (Grant IDG31400104

    Analysis of Transcriptional Regulatory Pathways of Photoreceptor Genes by Expression Profiling of the Otx2-Deficient Retina

    Get PDF
    In the vertebrate retina, the Otx2 transcription factor plays a crucial role in the cell fate determination of both rod and cone photoreceptors. We previously reported that Otx2 conditional knockout (CKO) mice exhibited a total absence of rods and cones in the retina due to their cell fate conversion to amacrine-like cells. In order to investigate the entire transcriptome of the Otx2 CKO retina, we compared expression profile of Otx2 CKO and wild-type retinas at P1 and P12 using microarray. We observed that expression of 101- and 1049-probe sets significantly decreased in the Otx2 CKO retina at P1 and P12, respectively, whereas, expression of 3- and 4149-probe sets increased at P1 and P12, respectively. We found that expression of genes encoding transcription factors involved in photoreceptor development, including Crx, Nrl, Nr2e3, Esrrb, and NeuroD, was markedly down-regulated in the Otx2 CKO at both P1 and P12. Furthermore, we identified three human retinal disease loci mapped in close proximity to certain down-regulated genes in the Otx2 CKO retina including Ccdc126, Tnfsf13 and Pitpnm1, suggesting that these genes are possibly responsible for these diseases. These transcriptome data sets of the Otx2 CKO retina provide a resource on developing rods and cones to further understand the molecular mechanisms underlying photoreceptor development, function and disease

    <scp>ReSurveyEurope</scp>: A database of resurveyed vegetation plots in Europe

    Get PDF
    AbstractAimsWe introduce ReSurveyEurope — a new data source of resurveyed vegetation plots in Europe, compiled by a collaborative network of vegetation scientists. We describe the scope of this initiative, provide an overview of currently available data, governance, data contribution rules, and accessibility. In addition, we outline further steps, including potential research questions.ResultsReSurveyEurope includes resurveyed vegetation plots from all habitats. Version 1.0 of ReSurveyEurope contains 283,135 observations (i.e., individual surveys of each plot) from 79,190 plots sampled in 449 independent resurvey projects. Of these, 62,139 (78%) are permanent plots, that is, marked in situ, or located with GPS, which allow for high spatial accuracy in resurvey. The remaining 17,051 (22%) plots are from studies in which plots from the initial survey could not be exactly relocated. Four data sets, which together account for 28,470 (36%) plots, provide only presence/absence information on plant species, while the remaining 50,720 (64%) plots contain abundance information (e.g., percentage cover or cover–abundance classes such as variants of the Braun‐Blanquet scale). The oldest plots were sampled in 1911 in the Swiss Alps, while most plots were sampled between 1950 and 2020.ConclusionsReSurveyEurope is a new resource to address a wide range of research questions on fine‐scale changes in European vegetation. The initiative is devoted to an inclusive and transparent governance and data usage approach, based on slightly adapted rules of the well‐established European Vegetation Archive (EVA). ReSurveyEurope data are ready for use, and proposals for analyses of the data set can be submitted at any time to the coordinators. Still, further data contributions are highly welcome.</jats:sec
    • 

    corecore