28,819 research outputs found

    On the use of the Fourier Transform to determine the projected rotational velocity of line-profile variable B stars

    Get PDF
    The Fourier Transform method is a popular tool to derive the rotational velocities of stars from their spectral line profiles. However, its domain of validity does not include line-profile variables with time-dependent profiles. We investigate the performance of the method for such cases, by interpreting the line-profile variations of spotted B stars, and of pulsating B tars, as if their spectral lines were caused by uniform surface rotation along with macroturbulence. We perform time-series analysis and harmonic least-squares fitting of various line diagnostics and of the outcome of several implementations of the Fourier Transform method. We find that the projected rotational velocities derived from the Fourier Transform vary appreciably during the pulsation cycle whenever the pulsational and rotational velocity fields are of similar magnitude. The macroturbulent velocities derived while ignoring the pulsations can vary with tens of km/s during the pulsation cycle. The temporal behaviour of the deduced rotational and macroturbulent velocities are in antiphase with each other. The rotational velocity is in phase with the second moment of the line profiles. The application of the Fourier method to stars with considerable pulsational line broadening may lead to an appreciable spread in the values of the rotation velocity, and, by implication, of the deduced value of the macroturbulence. These two quantities should therefore not be derived from single snapshot spectra if the aim is to use them as a solid diagnostic for the evaluation of stellar evolution models of slow to moderate rotators.Comment: 13 pages, 9 figures, accepted for publication in Astronomy & Astrophysic

    Search for missing baryon resonances via associated strangeness photoproduction

    Full text link
    Differential cross-section and single polarization observables in the process gamma p --> K^+ Lambda are investigated within a constituent quark model and a dynamical coupled-channel formalism. The effects of two new nucleon resonances and of the K*(892)- and K1(1270)-exchanges are briefly presented.Comment: Contributed paper to the IVth International Conference on Quarks and Nuclear Physics, Madrid June 5-10, 200

    In vivo cranial bone strain and bite force in the agamid lizard Uromastyx geyri

    Get PDF
    In vivo bone strain data are the most direct evidence of deformation and strain regimes in the vertebrate cranium during feeding and can provide important insights into skull morphology. Strain data have been collected during feeding across a wide range of mammals; in contrast, in vivo cranial bone strain data have been collected from few sauropsid taxa. Here we present bone strain data recorded from the jugal of the herbivorous agamid lizard Uromastyx geyri along with simultaneously recorded bite force. Principal and shear strain magnitudes in Uromastyx geyri were lower than cranial bone strains recorded in Alligator mississippiensis, but higher than those reported from herbivorous mammals. Our results suggest that variations in principal strain orientations in the facial skeleton are largely due to differences in feeding behavior and bite location, whereas food type has little impact on strain orientations. Furthermore, mean principal strain orientations differ between male and female Uromastyx during feeding, potentially because of sexual dimorphism in skull morphology

    The massive multiple system HD 64315

    Get PDF
    The O6 Vn star HD 64315 is believed to belong to the star-forming region known as NGC 2467, but previous distance estimates do not support this association. We explore the multiple nature of this star with the aim of determining its distance, and understanding its connection to NGC 2467. A total of 52 high-resolution spectra have been gathered over a decade. We use their analysis, in combination with the photometric data from All Sky Automated Survey and Hipparcos catalogues, to conclude that HD 64315 is composed of at least two spectroscopic binaries, one of which is an eclipsing binary. HD 64315 contains two binary systems, one of which is an eclipsing binary. The two binaries are separated by 0.09 arcsec (or 500 AU) if the most likely distance to the system, around 5 kpc, is considered. The presence of fainter companions is not excluded by current observations. The non-eclipsing binary (HD 64315 AaAb) has a period of 2.70962901+/-0.00000021 d. Its components are hotter than those of the eclipsing binary, and dominate the appearance of the system. The eclipsing binary (HD 64315 BaBb) has a shorter period of 1.0189569+/-0.0000008 d. We derive masses of 14.6+-2.3 M_\odot for both components of the BaBb system. They are almost identical; both stars are overfilling their respective Roche lobes, and share a common envelope in an overcontact configuration. The non-eclipsing binary is a detached system composed of two stars with spectral types around O6 V with minimum masses of 10.8 M_\odot and 10.2 M_\odot, and likely masses aprox. 30 M_\odot. HD 64315 provides a cautionary tale about high-mass star isolation and multiplicity. Its total mass is likely above 90 M_\odot,but it seems to have formed without an accompanying cluster. It contains one the most massive overcontact binaries known, a likely merger progenitor in a very wide multiple system.Comment: 14 pages, 13 figures, 8 Table

    Coasting cosmologies with time dependent cosmological constant

    Get PDF
    The effect of a time dependent cosmological constant is considered in a family of scalar tensor theories. Friedmann-Robertson-Walker cosmological models for vacumm and perfect fluid matter are found. They have a linear expansion factor, the so called coasting cosmology, the gravitational "constant" decreace inversely with time; this model satisfy the Dirac hipotesis. The cosmological "constant" decreace inversely with the square of time, therefore we can have a very small value for it at present time.Comment: 7 pages, latex file (ijmpal macro), accepted for publication in Int. Mod. Phys.

    Surface abundances of ON stars

    Get PDF
    Massive stars burn hydrogen through the CNO cycle during most of their evolution. When mixing is efficient, or when mass transfer in binary systems happens, chemically processed material is observed at the surface of O and B stars. ON stars show stronger lines of nitrogen than morphologically normal counterparts. Whether this corresponds to the presence of material processed through the CNO cycle or not is not known. Our goal is to answer this question. We perform a spectroscopic analysis of a sample of ON stars with atmosphere models. We determine the fundamental parameters as well as the He, C, N, and O surface abundances. We also measure the projected rotational velocities. We compare the properties of the ON stars to those of normal O stars. We show that ON stars are usually helium-rich. Their CNO surface abundances are fully consistent with predictions of nucleosynthesis. ON stars are more chemically evolved and rotate - on average - faster than normal O stars. Evolutionary models including rotation cannot account for the extreme enrichment observed among ON main sequence stars. Some ON stars are members of binary systems, but others are single stars as indicated by stable radial velocities. Hence, mass transfer is not a simple explanation for the observed chemical properties. We conclude that ON stars show extreme chemical enrichment at their surface, consistent with nucleosynthesis through the CNO cycle. Its origin is not clear at present.Comment: 18 pages, 10 figures (+ appendix). A&A accepte

    Determining the Chirality of Yukawa Couplings via Single Charged Higgs Boson Production in Polarized Photon Collision

    Full text link
    When the charged Higgs boson is too heavy to be produced in pairs, the predominant production mechanism at Linear Colliders is via the single charged Higgs boson production processes, such as ee+bcˉH+,τνˉH+e^-e^+ \to b \bar c H^+, \tau \bar \nu H^+ and γγbcˉH+,τνˉH+\gamma\gamma \to b \bar c H^+, \tau \bar \nu H^+. We show that the yield of a heavy charged Higgs boson at a γγ\gamma\gamma collider is typically one or two orders of magnitude larger than that at an ee+e^-e^+ collider. Furthermore, a polarized γγ\gamma\gamma collider can determine the chirality of the Yukawa couplings of fermions with charged Higgs boson via single charged Higgs boson production, and thus discriminate models of new physics.Comment: Version accepted by Physical Review Letters (references added, minor rewording, RevTex4

    Computing the Singularities of Rational Surfaces

    Get PDF
    Given a rational projective parametrization \cP(\ttt,\sss,\vvv) of a rational projective surface \cS we present an algorithm such that, with the exception of a finite set (maybe empty) \cB of projective base points of \cP, decomposes the projective parameter plane as \projdos\setminus \cB=\cup_{k=1}^{\ell} \cSm_k such that if (\ttt_0:\sss_0:\vvv_0)\in \cSm_k then \cP(\ttt_0,\sss_0,\vvv_0) is a point of \cS of multiplicity kk.Comment: In this new version, we only have changed the thanks. In particular, we have written: This work was developed, and partially supported, under the research project MTM2008-04699-C03-01 "Variedades param\'etricas: algoritmos y aplicaciones", Ministerio de Ciencia e Innovaci\'on, Spain and by "Fondos Europeos de Desarrollo Regional" of the European Unio
    corecore