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Abstract

Given a rational projective parametrization P(s, t, v) of a rational projective
surface S we present an algorithm such that, with the exception of a finite set
(maybe empty) B of projective base points of P, decomposes the projective
parameter plane as P2(K) \ B = ∪`k=1Sk such that if (s0 : t0 : v0) ∈ Sk then
P(s0, t0, v0) is a point of S of multiplicity k.

1 Introduction

The study, analysis and computation of the singular locus of algebraic varieties is an
old but still very active research topic. The interest on the study of singularities is
motivated by multiple reasons, being one of them their applicability; for instance, in
geometric modeling, when determining the shape and the topology of curves (either
planar or spatial) and of surfaces, when computing surface integrals, etc. In this paper,
we focus on the problem of computing the singularities, as well as their multiplicities,
of rational surfaces given parametrically.

When the algebraic variety is given as a zero set of finitely many polynomials, the
singularities and their multiplicities can be directly computed by applying elimination
theory techniques as Gröbner bases, characteristic sets, etc. However when the al-
gebraic variety is unirational and it is given by means of a rational parametrization,
besides the question of computing the singular locus and its multiplicity structure,
one has the additional problem of determining the parameter values that generate the
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singular points with their corresponding multiplicities. This, for instance, can be use-
ful when using a parametrization for plotting a curve or a surface or when utilizing
a parametrization for analyzing the intersection variety of two varieties being one of
them parametrically given. Of course, one can always apply elimination techniques
to first provide the defining implicit polynomials of the variety, second to determine
the singularities from these polynomials, third to decompose the singular locus w.r.t.
the multiplicities, and finally to compute the fibre (w.r.t. the parametrization) of the
elements in the singular locus. Nevertheless, this can be inefficient because of the
computational complexity.

So the challenge, in the unirational case, is to derive the singularities and their
multiplicity directly from a parametric representation avoiding the computation of the
ideal of the variety (for the notion of singularity and multiplicity see e.g. [2], Lectures
14 and 20). The case of rational curves (both planar and spatial) has been addressed
by several authors (see [1], [4], [5], [10]). However, the case of rational surfaces has not
been so extensively studied. We refer the reader to [3] where the case of rational ruled
surfaces is analyzed.

In this paper, we present an algorithm for computing the singularities of a rational
projective surface from an input rational projective parametrization not necessarily
proper (i.e., birational). More precisely, the problem we deal with is stated as:

Problem statement

• Given a rational projective parametrization

P(s, t, v) = (p1(s, t, v) : · · · : p4(s, t, v)),

of a rational projective surface S ⊂ P3(K), where K is an algebraically closed
field of characteristic zero.

• Decompose P2(K) \B, where B = {α ∈ P2(K) | p1(α) = · · · = p4(α) = 0}, as

P2(K) \B = ∪`k=1Sk

such that if (s0 : t0 : v0) ∈ Sk then P(s0, t0, v0) is a point of S of multiplicity k.

Therefore, the output of the algorithm solving this problem will be a finite collection
of quasiprojective varieties in P2(K) (in the sense of [13], pp. 46), namely {Si},
described by its equations, such that the parameter values in each set generate points
on the surface with the same multiplicity.

Although abusing the terminology, we will use the following definition
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Definition 1.1. The elements in S1 are called P-simple points of S, and the elements
in Sk, with k > 1, P-singularities of S of multiplicity k. We refer to these points as
affine (either P-simple or P-singular) points if v0 6= 0 and points (either P-simple or P-
singular) at infinity if v0 = 0. Moreover, we represent the multiplicity of (s0 : t0 : v0) as
mult((s0 : t0 : v0)) meaning

mult((s0 : t0 : v0)) = mult(P(s0, t0, v0),S))

where mult(A,S) denotes the multiplicity of A ∈ P3(K) w.r.t. S.

The polynomials p1, . . . , p4 are assumed to be homogeneous of the same degree and
coprime. Therefore the parametrization P(s, t, v) induces the regular map

P : P2(K) \B → S
α 7→ P(α)

where B is as above, in the problem description; we call the elements in B the (projec-
tive) base points of the parametrization (see Section 2). We will be able to decompose,
as above, P2(K) \B.

B is either zero dimensional or empty. So, we will be missing (at most) finitely
many parameter values in P2(K). On the other hand if B = ∅, since S is irreducible
and P regular, then P(P2(K)) = S (see e.g. Theorem 2, page 57, in [13]). Therefore, if
B = ∅, our method will determine all singularities of S. However, if B 6= ∅ the method
will generate all singularities in the dense set P(P2(K) \ B) ⊂ S. For avoiding this
deficiency one may consider reparametrizing normally the parametrization, however
this not an easy task (see [9]). We do not deal with this issue in this paper.

Our method is based on the generalization of the ideas in [5] in combination with the
results in [6] and [7] that perform the computations without implicitizing. Intuitively
speaking, the method works as follows; see Section 2 for further details. First we
state a general formula for computing the multiplicity of an affine point of K3 w.r.t.
an affine surface (see Section 3). Then, we study how this formula behaves under
specializations when applied to a parametric (rational) point (see Section 4) and we
derive an algorithm. Next, we analyze, by means of the algorithm in Section 4, the
multiplicity of the (affine) parameter values of the form pa := (s0 : t0 : 1) to later
study the parameter values (at infinity) of the form p∞ := (s0 : t0 : 0). In order to
compute mult(pa) we consider the four affine rational parametrizations (we call them
P1, . . . ,P4) generated by P(s, t, v) by dehomogenizing w.r.t. the first, second, third
and fourth component of the parametrization, respectively and taking v = 1. Then,
we apply the algorithm in Section 4 to pa via one of the affine parametrizations, say, P4.
This first attempt will classify all affine parameter values with the exception of a proper
closed set, and hence with the exception of finitely many component of dimension either
1 or 0. By using consecutively the other three affine parametrizations we achieve the
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multiplicity of all affine parameter values not covered by P4 and not being base points
(see Section 5). Finally we deal with p∞ with a similar strategy but dehomogenizing
with either s = 1 or t = 1.

The structure of the paper is as follows. In Section 2 we introduce the notation
and we briefly describe the general strategy as well as the underlying ideas. In Section
3 we state the multiplicity formula, we develop a method for computing a point not
on the surface (this will be needed in the algorithm), starting from the parametric
representation and without implicitizing. Moreover, we briefly recall some procedures
from [6] and [7]. In Section 4, we analyze the execution of the multiplicity formula
for the case of rational parametric points, and we derive an algorithm. In Section
5, we deal with the determination of the P-singularities, and it ends with the final
algorithm that summarizes all the ideas derived previously. In Section 6, we illustrate
the algorithm by means of two examples. Computations in the examples were carried
out with the mathematical software Maple.

2 Notation and Strategy Description

In this section we introduce the notation that will be used throughout the paper, we
describe the general strategy, and we give the intuitive ideas underlining our reasonings.

K is an algebraically closed field of characteristic zero, and P2(K),P3(K) are the
projective plane and projective space over K, respectively. Let (x1 : x2 : x3 : x4) be
the projective coordinates in P3(K). In addition, throughout the paper, we introduce
the following notation:

• S ⊂ P3(K) is a rational projective surface. For simplicity in the explanation,
we assume that S is not a plane. Note that this assumption is not a loss of
generality, because one can easily deduce whether a parametrically given surface
is a plane, and in this case all points are simple.

• P(s, t, v) = (p1(s, t, v) : p2(s, t, v) : p3(s, t, v) : p4(s, t, v)) is a rational projective
parametrization of S, where gcd(p1, p2, p3, p4) = 1 and the four polynomials are
homogeneous (note that none of them is zero) of the same degree.

• Si is the affine surface obtained by dehomogenization of S with xi = 1; note that
S is not the plane xi = 0,

• and Pi(s, t) is the affine parametrization of Si obtained by taking v = 1 and
dehomogenizing P(s, t, v) w.r.t. the i-component.

• We say that (s0 : t0 : v0) ∈ P2(K) is a (projective) base point of P(s, t, v) if
p1(s0, t0, v0) = p2(s0, t0, v0) = p3(s0, t0, v0) = p4(s0, t0, v0) = 0. We denote by B
the set of (projective) base points of P(s, t, v).
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• Furthermore, we denote by Ba the set Ba = {(s0, t0) ∈ K2| (s0 : t0 : 1) ∈ B}. We
call the points in Ba the (affine) base points of P(s, t, v). Often, we will consider
Ba naturally embedded in B.

We start with two technical lemmas on base points. Since B is the intersection of
the projective curves defined by pi(s, t, v), and since gcd(p1, p2, p3, p4) = 1, we get the
following lemma.

Lemma 2.1. Card(B) <∞.

Ba can be expressed in terms of the zeros of the denominators of Pi(s, t); when
we will speak about the numerator or the denominator of a rational function we will
always assume that the rational function is given in reduced form.

Lemma 2.2. Ba =
⋂4
i=1 ∆i where ∆i is the algebraic set defined, over K, by the least

common multiple of the denominators of Pi(s, t).

Proof. Let Pi(s, t) = (pi,1/qi,1, pi,2/qi,2, pi,3/qi,3), with gcd(pi,j, qi,j) = 1, and let δi :=
lcm(qi,1, qi,2, qi,3). Let Pi(s, t) be also expressed as Pi(s, t) = (ai/di, bi/di, ci/di) with
gcd(ai, bi, ci, di) = 1. We prove that δi = di, and from there the proof is trivial. Let us
assume that δ1 6= d1; similarly for the others. Clearly δ1 divides d1. So, there exists a
non-trivial factor H1 such that d1 = δ1H1. Therefore, by construction, H1 divides dk,
with k = 2, 3, 4. However, since gcd(p1, p2, p3, p4) = 1 then gcd(d1, . . . , d4) = 1.

Furthermore, if Θ : Kn → Km is a rational affine map, we denote by deg(Θ) the
degree of the map Θ (see e.g. [13] pp. 143, or [2] pp. 80). In particular, deg(Pi)
denotes the degree of the rational map Pi induced by the rational parametrization
Pi(s, t); that is, of the rational map:

Pi : K2 \∆i → Si ⊂ K3

(s0, t0) 7→ Pi(s0, t0)

where ∆i is as in Lemma 2.2.

Also, for a rational function χ we denote by Numer(χ) the numerator of χ. By
PrimPart{v1,...,vn}(f) and Content{v1,...,vn}(f), where f ∈ K[x1, . . . , xm][v1, . . . , vn], we
denote the primitive part and the content w.r.t. {v1, . . . , vn} of f , respectively.
That is, Content{v1,...,vn}(f) is the gcd of all the coefficients of f w.r.t. {v1, . . . , vn},
that are multivariate polynomials in K[x1, . . . , xm], and PrimPart{v1,...,vn}(f) is
f/Content{v1,...,vn}(f). In addition, for f, g polynomials depending on s we denote
Ress(f, g) its resultant.

For P = (a1 : a2 : a3 : a4) ∈ P3(K), we represent by mult(P,S) the multiplicity of
P on S (see [2] pp. 258); note that if ai 6= 0, then mult(P,S) = mult((

aj
ai
, ak
ai
, a`
ai

),Si),
where j < k < ` and i 6∈ {j, k, `}.
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General Strategy and Ideas

We briefly describe here the ideas of our strategy and ideas. The precise details
on how to execute them will come in the subsequent sections. The main steps in our
strategy are as follows; we recall that our goal is to decompose P2(K) such that for
(s0 : t0 : v0) ∈ P2(K) we know whether P(s0, t0, v0) is singular or simple in S, and
if it is singular we also want to determine its multiplicity. For this purpose, we will
denote by ∆i the algebraic set defined, over K, by the least common multiple of the
denominators of Pi(s, t).

[Basic Tool] The basic tool is a formula for computing the multiplicity of an
affine point in K3 w.r.t. a rational affine surface, given by means of a rational
parametrization (see Section 3 for further details). The formula is based on the
computation of the degree of two rational maps, one depending on the point
under analysis and the other the map associated to the given parametrization.
Intuitive Idea: Let us assume that we know the defining polynomial f(x, y, z) of
the surface, then the multiplicity of the origin is given by the difference of the
degree of the homogenization F (x, y, z, w) of f(x, y, z) minus the degree of F
w.r.t. w. On the other hand, if one is working with parametrizations (which is
our case) this computation can be reduced to the computation of two different
partial degrees (i.e. degrees w.r.t. a fixed variable), and this can be done, using
generalized resultants (see Section 4 in [8]) to count the elements in generic fibers.
If the point is not the origin a suitable translation solves the problem. For details
see Section 3.

[Basic Analysis] Once the multiplicity formula has been developed we analyze its
behavior, under specialization, when applied to a parametric (rational) point.
Indeed, the parametric point is taken as the original rational parametrization of
the surface but introducing two new parameters. So, the full analysis is done
carrying out 4 parameters: two are representing the surface and the two others
are varying and representing particular points on the surface, all through the
given parametrization.
Intuitive Idea: Since the formula is, ultimately, based on general resultants, the
analysis essentially imply to study how the subsequent gcds and resultants behave
under specialization.

1. [Affine Points] First we analyze the parameter values of the form (s0 : t0 : 1).
For that, we apply the method, derived from the basic analysis, to study under
specializations the multiplicity of P4(s, t) and we treat the problem in K2. At
this stage, we will be able to give an answer for K2 \∆4. Repeating the process
for ∆4, with P3(s, t), and if necessary with P2(s, t) and P1(s, t) we will be able
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to determine the multiplicity for the parameter values in (see Lemma 2.2)

K2 \
4⋂
i=1

∆i = K2 \Ba.

Intuitive Idea: We apply (see basic analysis above) the multiplicity formula for
parametric points to the parametric point P4(s∗, t∗), that is a generic point of S4,
and where S4 is represented by the parametrization P4(s, t). This will provide
mult((s0 : t0 : 1)) = mult(P4(s0, t0),S4) for all (s0, t0) ∈ K2\∆4; note that P4(s, t)
is not defined at ∆4 and that generically the multiplicity will be 1. To deal with
the parameter values in ∆4, we apply the generic multiplicity formula again, but
now to the points P3(s∗, t∗) where (s∗, t∗) ∈ ∆4 \ ∆3, that is a generic point of
S3, and where S3 is represented by the parametrization P3(s, t). If necessary
we continue the process using P2(s, t) and P1(s, t). At the end, we will have
mult((s0 : t0 : 1)) for all (s0, t0) ∈ K2 \Ba. For details see Section 5.

2. [Points at Infinity] First, we analyze the case of (0 : 1 : 0), checking first whether
(0 : 1 : 0) ∈ B. Second, we study the case of the parameter values (1 : λ : 0). For
this purpose, first we find those λ values generating base points. Afterwards, we
study (under a suitable dehomogenization) the rest of the points.
Intuitive Idea: when the point is over K we apply the basic tool, and when it is
parametric we apply the basic analysis.

3 The multiplicity formula

In this section we state a formula for computing the multiplicity of a point A ∈ K3

w.r.t. an affine rational surface Z in K3, when a rational parametrization Q(s, t) (not
necessarily proper) is provided. For this purpose, we consider the affine version of the
composition of the original parametrization Q(s, t) with the projection from the point
A on K3, (that we denote by Φ23(A)), and the formula

deg(Z)−mult(A,Z) =
deg(Φ23(A))

deg(Q)
;

see also the intuitive idea description in step 1 of the general strategy (see Section 2). By
using [6] (Theorem 5 or 6), we compute deg(Q), and the degree of Φ2,3(A) : K2 → K2 is
computed using the results in [7] (Theorem 1) or [8] (Theorem 4). Nevertheless, deg(Z)
needs to be determined; recall that we do not have the implicit equation. However, if
we would know a point A0 6∈ Z, then mult(A0,Z) = 0 and

deg(Z) =
deg(Φ23(A0))

deg(Q)
.
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Therefore, everything is reduced to map-degree computations. But, how to compute
A0 6∈ Z? The idea is as follows. Let us assume that we have computed the degree m
w.r.t. a variable (say x) of the defining polynomial of Z; this computation, once more,
can be done by using generalized resultants, (see Section 4 in [8]). Then, for almost all
lines L orthogonal to the plane x = 0, Card(L ∩ Z) = m. Moreover, since we know a
parametrization of Z, namely Q(s, t), we have a description of L∩Z as intersection of
plane curves in the variables {s, t}. So, one can take orthogonal lines till the expected
number of intersections is reached. Once such a line is reached, every point, out of the
curves defining L ∩ Z, provides a point that does not belong to Z.

In the following, we recall some of the procedures developed in [6], [7] and [8], and
we present our method for determining a point out of the surface without knowing
the implicit equation as well as a method for deciding whether a parametrically given
surface is a cone (detecting cones will be useful in our analysis). For that purpose,
throughout this section, Z ⊂ K3 is a rational affine surface and

Q(s, t) =

(
N1(s, t)

D1(s, t)
,
N2(s, t)

D2(s, t)
,
N3(s, t)

D3(s, t)

)
a rational parametrization (in reduced form) of Z; we assume that Z is not a plane.
Moreover, let f(x, y, z) be the defining polynomial of Z and F (x, y, z, w) its ho-
mogenization. For A = (a, b, c) ∈ K3, we consider the polynomial g(x, y, z) =
f(x + a, y + b, z + c), as well as G(x, y, z, w) = F (x + aw, y + bw, z + cw,w). It is
clear that

mult(A,Z) = deg(G)− degw(G).

On the other hand, note that(
N1(s, t)

D1(s, t)
− a, N2(s, t)

D2(s, t)
− b, N3(s, t)

D3(s, t)
− c, 1

)
parametrizes the projective surface defined by G. Therefore, since Z is not a plane,
then N1/D1 − a 6= 0 and hence

Q∗(s, t) =

(
N2 − bD2

N1 − aD1

· D1

D2

,
N3 − cD3

N1 − aD1

· D1

D3

,
D1

N1 − aD1

)
parametrizes the affine surface defined by G(1, y, z, w); note that, since G is homoge-
neous, degw(G) = degw(G(1, y, z, w)). Let us introduce the following notation

Φ2,3(A)(s, t) =

(
N2(s, t)− bD2(s, t)

N1(s, t)− aD1(s, t)
· D1(s, t)

D2(s, t)
,
N3(s, t)− cD3(s, t)

N1(s, t)− aD1(s, t)
· D1(s, t)

D3(s, t)

)
and let Φ2,3(A) : K2 → K2 be the induced map; note that Φ2,3(A) is indeed the affine
version of the composition of the original parametrization Q(s, t) with the projection
from the point A on K2.
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In the following we introduce several rational functions and polynomials, namely
χi, gi, K, g

A. All of them, depend on Q(s, t) and A. Nevertheless, since this would not
be a source of ambiguity for χi, gi and K, and for the sake of simplicity, we omit this
dependency for them. However, for gA we keep, in the notation, the dependency w.r.t.
the point A and we omit Q since the parametrization stays the same throughout the
whole section.

If for i = 1, 2, χi(s, t) denotes the i-component of Φ2,3(A)(s, t), let gi be the
polynomial

gi(s, t, h1, h2) = Numer(χi(s, t)− χi(h1, h2)), i = 1, 2

where h1, h2 are new variables, and let K(s, t, h1, h2) = gcd(g1, g2) where the gcd is
computed in K[h1, h2][s, t]. That is, the polynomials are bivariate polynomials in {s, t}
with coefficients in the unique factorization domain K[h1, h2] (see e.g. Chapter 1,
Section 14 in [15]), and therefore the gcd is unique up to multiplication by units; so, up
to multiplication by non-constant polynomials in K[h1, h2]. The important property of
K is its dependency on {s, t}. Thus, we introduce the polynomial

gA(s, t, h1, h2) =

{
K(s, t, h1, h2) if deg{s,t}(K) > 0
1 if deg{s,t}(K) = 0

Remark 3.1. We observe that if gA = 1 then the determinant of the Jacobian of
Φ2,3(A)(s, t) is not identically zero (see the preliminary paragraphs to Theorem 1 in
[7]).

In the following theorem and corollaries we assume that none of the projective curves
defined by each of the non-constant polynomials in {N1, N2, N3, D1, D2, D3, N2 −
bD2, N3 − cD3, N1 − aD1} passes through (0 : 1 : 0); recall that A = (a, b, c). Note
that, if necessary, one can always perform a suitable linear change of coordinates such
that the above curves satisfies the assumptions; this is equivalent to perfom a suitable
linear (polynomial) reparametrization of the original parametrization.

Theorem 3.2. (The general formula) It holds that

1. mult(A,Z) = deg(Z) iff gA 6= 1.

2. mult(A,Z) < deg(Z) iff gA = 1. Furthermore, if gA = 1 then

deg(Z)−mult(A,Z) =
deg(Φ23(A))

deg(Q)
,

Proof. (1) By Theorem 4 in [7], degw(G) = 0 iff gA 6= 1. Hence, mult(A,Z) = deg(Z)
iff gA 6= 1.
(2) All hypothesis of Theorem 6 in [8] are satisfied. Therefore, degw(G) = deg(Φ23(A))

deg(Q∗)
,

and the result follows by taking into account that deg(Q) = deg(Q∗).
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Remark 3.3. Note that:

1. If gA 6= 1, by Theorem 3.2 (1), then A ∈ Z.

2. For A 6∈ Z, deg(Φ2,3(A)) is invariant, indeed it is deg(Z)deg(Q).

3. Let a 6= 0; similarly for b and c. We embed A in P3(K) as (a : b : c : 1). Let
Z be the projective closure of Z, and let Z1 the dehomogenization of Z w.r.t.
x1 = 1. Let Q1 be the corresponding parametrization of Z1 generated by Q, let
A = ( b

a
, c
a
, 1
a
), and let Φ2,3(A) be the induced rational map obtained from Q1 and

A. Then deg(Z) = deg(Z1), mult(A,Z) = mult(A,Z1) and deg(Q) = deg(Q1).
Therefore, deg(Φ2,3(A)) = deg(Φ2,3(A)).

Corollary 3.4. Z is a cone of vertex A if and only if gA 6= 1.

Proof. Let Q(s, t) = t(g1(s), g2(s), g3(s)) be a rational parametrization of Z where we
assume w.l.o.g. that A is the origin O. The defining polynomial f(x, y, z) of Z is
a form of degree d > 1. Therefore mult(O,Z) = d = deg(Z) and by Theorem 3.2,
gO 6= 1. Conversely, if gA 6= 1 then degw(G) = 0 (see Theorem 4 in [7]). Thus,
G(x, y, z, w) = g(x, y, z) is an irreducible form of degree d > 1. Let us see that
{g(x, y, z) = 0} ∩ {x = 1} defines a rational plane curve D of degree d. Since g is a
form and Z is not a plane, D is a curve of degree d. Moreover, since Z is a surface,
Φ2,3(A)(s, t) is not constant and parametrizes the surface defined by g(1, y, z). Then
substituting either t or s by a suitable constant (say t by t0), R(s) := (1,Φ2,3(A)(t0, s))
parametrizes D.

Now, Q(s, t) = A + tR(s) defines a cone of vertex A contained in Z. Therefore,
since Z is irreducible, it holds that Z is the previous cone.

Corollary 3.5. There exists at most one A ∈ K3 such that gA 6= 1.

Proof. Otherwise, by Corollary 3.4, it would be a cone over a line, therefore a plane in
contradiction to our general assumption.

Corollary 3.6. (The multiplicity formula) Let A0 ∈ K3 \ Z and let A ∈ K3. Then

1. if gA = 1, then

mult(A,Z) =
deg(Φ23(A0))− deg(Φ23(A))

deg(Q)
,

2. if gA 6= 1, then

mult(A,Z) =
deg(Φ23(A0))

deg(Q)

10



Proof. We prove (1); similarly for (2). By Theorem 3.2, one has that (deg(Z) −
mult(A,Z))deg(Q) = deg(Φ23(A)), and deg(Z)deg(Q) = deg(Φ23(A0)). From here the
proof is obvious.

Remark 3.7. Note that

1. if there exists A0 such that gA0 6= 1 (i.e., Z is a cone), Theorem 3.2 and Corollary
3.6 provide the degree of the surface.

2. From Corollary 3.6, one deduces that deg(Φ23(A)) is invariant for all the A ∈ K3

having the same multiplicity w.r.t. Z.

The next corollary is a direct consequence of Corollary 3.6.

Corollary 3.8. (Criterion for simple points) Let A0 ∈ K3 \ Z and let A ∈ K3. The
following statements are equivalent

1. A is a simple point of Z.

2. gA = 1 and deg(Φ2,3(A0))− deg(Φ23(A)) = deg(Q).

Proof. By Theorem 3.2, (deg(Z) − 1)deg(Q) = deg(Φ2,3(A)), and deg(Z)deg(Q) =
deg(Φ2,3(A0)). From here the proof is obvious.

In the last part of this section we deal with the algorithmic outline of the ideas
described before. On one hand, we observe that because of Corollaries 3.4, 3.5, and
3.6, it would help to our analysis to have an easy way to detect cones. On the other
hand, if we know how to compute deg(Q), deg(Φ23(A)) for any given A ∈ K3, and if we
know how to compute a point out of the surface (recall that we do not have the implicit
equation of Z), Corollary 3.6 provides a method for computing the multiplicity of any
point in K3, and Corollary 3.8 a method to check whether it is simple on the surface.

Cones Detection

For our analysis, it would be helpful to know whether Q(s, t) is a cone and, if so, to
determine its vertex. Let us assume that Z is a cone. First, we observe that for each
Q(s0, t0) such that

{
∂Q
∂s

(s0, t0), ∂Q
∂t

(s0, t0)
}

are linearly independent, the tangent plane
to Z at Q(s0, t0) intersects Z in a line passing through the vertex of the cone; we refer
to such points as Q-regular. Our second remark is that the intersection of all tangent
planes to Z at the Q-regular points is indeed the vertex; recall that Z is not a plane.
This is established in the next lemma.
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Lemma 3.9. Let Z be a cone different from a plane. The intersection of all tangent
planes to Z at the Q-regular points is the vertex.

Proof. Since Z is not a plane, the intersection cannot be a plane. Moreover, the vertex
is on all the tangent planes, so it only remains to prove that the intersection is not a
line. We assume w.l.o.g. that the vertex is the origin. Then, after a suitable birational
transformation Z can be parametrized as (tp1(s), tp2(s), t) where p1, p2 are rational
functions, not both constant. Let us assume that the intersection is a line and let
v = (α, β, γ) be its direction vector. Then, {v, (p1(s), p2(s), 1), (tp′1(s), tp′2(s), 0)} are
linearly dependent. Thus, {v, (p1(s), p2(s), 1), (p′1(s), p′2(s), 0)} are linearly dependent.
Note that γ 6= 0 because Z is not a plane. Therefore,(

α

γ
− p1(s)

)
p′2(s) =

(
β

γ
− p2(s)

)
p′1(s).

This implies that infinity tangents to the rational curve (p1(s), p2(s)) pass through the
point (α

γ
, β
γ
). So, (p1(s), p2(s)) is a line, and Z a plane, which is a contradiction.

The next theorem characterizes conical surfaces.

Theorem 3.10. Let Z not be a plane. Z is a cone if and only if all tangent planes to
Z at the Q-regular points intersect exactly in one point; in this case, the intersection
point is the vertex of the cone.

Proof. The left-right implication was proved in Lemma 3.9. So, let us assume that all
tangent planes to Z at the Q-regular points intersect exactly in one point, that w.l.o.g.
we assume is the origin. Let F (x, y, z) be the defining polynomial of Z. Then, for
almost all (s, t) values it holds that

∇(F )(Q(s, t)) · (0−Q(s, t)) = 0.

Let G(x, y, z) = x∂F
∂x

(x, y, z) + y ∂F
∂y

(x, y, z) + z ∂F
∂z

(x, y, z); clearly G is not the zero

polynomial. Since F is irreducible and deg(F ) = deg(G), one has that F = αG for
some α ∈ K. On the other hand, let F be expressed as F =

∑n
i=k Fi, where Fi is

homogenous of degree i and k ≤ n. Then, G =
∑n

i=k(x
∂Fi

∂x
+ y ∂Fi

∂y
+ z ∂Fi

∂z
). Thus, by

Euler’s formula, Fi = α(x∂Fi

∂x
+ y ∂Fi

∂y
+ z ∂Fi

∂z
) = αiFi, for k ≤ i ≤ n. Therefore, α = 1/n

and k = n. So, F is homogeneous and defines a conical surface.

From the previous results, one derives the following algorithm.

Method 1: Checking cones

[Step 1] Take parameter values until getting three Q-regular points not on the same
line; say Pi = Q(si, ti), i = 1, 2, 3.
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[Step 2] For i = 1, 2, 3, compute the tangent plane Hi to Z at Pi.
[Step 3] If H1 ∩H2 ∩H3 = ∅, return that Z is not a cone.
[Step 4] Compute the implicit equation ∆(s, t, x, y, z) of the tangent plane to Z at the
generic point Q(s, t).
[Step 5] If H1 ∩ H2 ∩ H3 = {Q} and ∆(s, t, Q) is identically zero, return that Z is a
cone of vertex Q else return that Z is not a cone.
[Step 6] IfH1∩H2∩H3 is a line, say parametrized as L(λ), and ∆(s, t, L(λ)) is identically
zero then return Z is not a cone else

[Step 6.1.] Take (s4, t4) such that P4 := Q(s4, t4) is Q-regular and ∆(s4, t4, L(λ)) is
well defined and non-zero.
[Step 6.2.] Compute the tangent plane H4 to Z at P4.
[Step 6.3.] If H1 ∩ · · · ∩H4 = ∅, return that Z is not a cone.
[Step 6.4.] If H1 ∩ · · · ∩H4 = {Q′} and ∆(s, t, Q′) is identically zero, return Z is a
cone of vertex Q′ else return that Z is not a cone.

[Step 7] If H1 ∩H2 ∩H3 is a plane, say parametrized as L(λ, µ), and ∆(s, t, L(λ, µ)) is
identically zero then return Z is not a cone else

[Step 7.1.] Take (s4, t4) such that P4 := Q(s4, t4) is Q-regular and ∆(s4, t4, L(λ, µ))
is well defined and non-zero.
[Step 7.2.] Compute the tangent plane H5 to Z at P4.
[Step 7.3.] If H1 ∩ · · · ∩H4 = ∅, return that Z is not a cone.
[Step 7.4.] If H1 ∩ · · · ∩H4 = {Q′} and ∆(s, t, Q′) is identically zero, return Z is a
cone of vertex Q′ else return that Z is not a cone.
[Step 7.5.] If H1 ∩ · · · ∩H4 is a line go to Step 6.

Remark 3.11. Note that, in general, if the parameter values are taken randomly, the
algorithm will not need to execute Steps 6 and 7.

Computation of deg(Q) and of deg(Φ23(A))

We note that deg(Q) is the index of improperness of Q(s, t); if Q(s, t) is proper
then this index is 1. Therefore, once the parametrization is given, deg(Q) is fixed.
However, deg(Φ23(A)) will vary depending on A. Both quantities can be derived by
applying elimination theory techniques such as Gröbner basis. Indeed, they can be
computed by means of resultants as shown in [6] (Theorem 5 and Theorem 6) without
determining the implicit equation of the surface.

In the following we recall (as a recipe) how to compute deg(Q) and deg(Φ23(A)). In
order to compute the degree of a map, we count the number of points in a generic fiber.
With our geometric assumptions, this can be computed using resultant computations.
This is done in previous papers, but for completeness we recall them here. For further
details, in order to compute deg(Q) we refer to [6] (see Theorems 5 and 6), and to
compute deg(Φ23(A)), we refer to [7] (Theorem 1) or [8] (see Theorem 4). In addition,
we deduce a method for determining a point out of the surface.
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Method 2: Computation of deg(Q)

[Step 0] Check the global hypotheses:

[Step 0.1] If any of the projective curves defined by the each of the non-constant
polynomials in {N1, N2, N3, D1, D2, D3} passes through (0 : 1 : 0), apply a suit-
able (polynomial) linear reparametrization to Q(s, t); i.e apply a linear change of
coordinates in {s, t}.
[Step 0.2] If the determinant of the Jacobian of (N2

D2
, N3

D3
) is identically zero, apply

a suitable linear change of coordinates in K3; namely, exchange suitably the affine
coordinates in K3.

[Step 1] For i = 1, 2, 3, compute Gi(s, t, h1, h2) = Numer
(
Ni(s,t)
Di(s,t)

− Ni(h1,h2)
Di(h1,h2)

)
.

[Step 2] Determine R(s, h1, h2, X) = Rest(G1, G2 +XG3) where X is a new variable.
[Step 3] Compute S(s, h1, h2) = PrimPart{h1,h2}(ContentX(R))).
[Step 4] deg(Q) = degs(S).

We observe that by Theorem 3.2, if A0 6∈ Z then gA0 = 1. Therefore, by Corollary
3.6, we only need to compute deg(Φ23(A)) for those A such that gA = 1; in particular
when A = A0. Thus, in the following we assume that A = (a, b, c) is such that gA = 1.

In addition, since gA = 1, by Remark 3.1, the determinant of the Jacobian of
Φ2,3(A)(s, t) does not vanish. Therefore, Φ2,3(A)(K2) is dense in K2. So, we can
compute the degree by taking a generic element (X1,X2) ∈ K2 as it is done in [8] (see
Theorem 2). More precisely, we have the following method.

Method 3: Computation of deg(Φ23(A))

[Step 0] Check the global hypotheses: if any of the projective curves defined
by the each of the non-constant polynomials in {N1 − aD1, N2 − bD2, N3 −
cD3, N1, N2, N3, D1, D2, D3} passes through (0 : 1 : 0), apply a suitable (polynomial)
linear reparametrization to Q(s, t); i.e apply a linear change of coordinates in {s, t}.

[Step 1] We take the components χi(s, t) of Φ2,3(A)(s, t) := (χ1(s, t), χ2(s, t))
[Step 2] For i = 1, 2, let Hi(s, t,Xi) = Numer(χi(s, t)− Xi) ∈ K[s, t,Xi].
[Step 3] R(s,X1,X2) = Rest(H1, H2) ∈ K[s,X1,X2]
[Step 4] deg(Φ2,3(A)) = degs(PrimPart{X1,X2}(R)).

Computation of a point A0 out of Z

For our reasoning we need to know the degree with respect to one of the variables
of the defining polynomial of Z; i.e. its partial degree. Say that m is the degree of the
defining polynomial of Z w.r.t. the variable x (below we show how to compute m).
This means that for almost all affine lines L of the type {y = λ, z = µ} (recall that
Z is not a plane) it holds that Card(L ∩ Z) = m. Then, the idea is as follows. We
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take values for (λ, µ) till the number of different points on Z generated by Q(s, t) is
m. Note that for a fixed (λ, µ), these points are:

W(λ, µ) =


(
N1(s, t)

D1(s, t)
, λ, µ

) ∣∣∣∣∣∣
D2(s, t)λ−N2(s, t) = 0,
D3(s, t)µ−N3(s, t) = 0,
lcm(D1, D2, D3)(s, t) 6= 0.


Once we have found a suitable (λ, µ), every point (α, λ, µ) 6∈ W(λ, µ) is not on Z. We
finish this section showing how to compute m (see details in Theorem 6 in [8]).

Method 4: Computation of the degree w.r.t. x

[Step 1] Apply Method 2 to compute deg(Q)
[Step 2] Let, for i = 2, 3, Gi(s, t, h1, h2) as in Step 1 of Method 2.

[Step 3] Return
1

deg(Q)
degs(PrimPart{h1,h2}(Rest(G2(s, t, h1, h2), G3(s, t, h1, h2))).

Remark 3.12. Note that the polynomials Gi are obtained in Step 1 of Method 2,
and therefore it might happen that Step 0 of Method 2 was required. In that case,
we would have performed a linear change in the parameters {s, t}, and/or an affine
linear change of coordinates {x, y, z} consisting in a permutation of variables. The
first situation does not affect to the partial degree of the polynomial. However, the
second can. Nevertheless, if this is the case, we only need to work with the new
variable (the one exchanged with x) and the corresponding lines perpendicular to its
corresponding coordinate plane.

Method 5: Computation of A0 ∈ K3 \ Z

[Step 1] Apply Method 4 to compute the degree m of the defining polynomial of Z
w.r.t. x.
[Step 2] Give values to (λ, µ) ∈ K2 till Card(W(λ, µ)) = m, then take A0 := (α, λ, µ) ∈
K3 \W(λ, µ).

Computation of mult(A,Z)

We finish the section, putting together all the previous ideas for computing the
multiplicity of A ∈ K3 w.r.t. to the rational affine surface Z, parametrized by Q(s, t).

Method 6: Computation of mult(A,Z)

[Step 1] Apply Method 5 to find a point A0 6∈ Z.
[Step 2] Compute gA.
[Step 3] If gA 6= 1 then
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[Step 3.1] Apply Method 3 to compute n1 := deg(Φ2,3(A0)).
[Step 3.2] Apply Method 2 to compute n2 := deg(Q).
[Step 3.3] Return n1

n2

[Step 4] If gA = 1 then
[Step 4.1] Apply Method 3 to compute m1 := deg(Φ2,3(A)) and n1 := deg(Φ2,3(A0)).
[Step 4.2] Apply Method 2 to compute n2 := deg(Q).
[Step 4.3] Return n1−m1

n2

4 The Multiplicity Algorithm Under Specialization

Let Q(s, t) and Z be as in Section 3. For our purposes, we need to analyze how
Method 6 works, under specialization, when applied to a generic point on Z. So, we
take A(s∗, t∗) = Q(s∗, t∗) as generic point and we analyze mult(A(s∗, t∗),Z), depending
on the values taken by (s∗, t∗); note that we need to introduce new parameters (s∗, t∗),
because in the execution of Method 6, Q(s, t) will represent the surface while A(s∗, t∗)
will represent the generic point, and hence the specialization will be considered on
(s∗, t∗). In addition, we will also study the particular case when the point on the
surface does not represent all the surface but only a curve on the surface.

Let ∆Q be the algebraic set defined by lcm(D1, D2, D3) over K. Then A(s∗, t∗) is
well defined in Λ := K2 \∆Q. Our goal is to decompose Λ as

Λ = ∪`k=1Fk

such that if (s0, t0) ∈ Fk thenA(s0, t0) is a point of Z of multiplicity k. For this purpose,
we analyze how the steps of Method 6 behave under specialization. Generically, that
is, for an open subset of Λ, the multiplicity will be 1. We will collect the exceptional
situations, i.e. those parameter values where the multiplicity might be bigger than 1,
in a subset Ω to afterwards analyze the multiplicities in Ω \∆Q.

Determination of Ω

Ω is computed as union of finitely many close set Ω0, . . . ,Ω4. Let us assume that
we have already computed a point A0 ∈ K3 \ Z (see Method 5 in Section 3) as well
as deg(Φ2,3(A0)) and deg(Q) (see Methods 2 and 3 in Section 3); therefore, Step 1 of
Method 6 is already executed. To perform Step 2 in Method 6, let Φ2,3(A)(s, t) be
expressed as Φ2,3(A)(s, t) = (χ1(s, t, s∗, t∗), χ2(s, t, s∗, t∗)) where

χ1(s, t, s∗, t∗) =
D2(s∗, t∗)N2(s, t)−N2(s∗, t∗)D2(s, t)

D1(s∗, t∗)N1(s, t)−N1(s∗, t∗)D1(s, t)
· D1(s, t)

D2(s, t)
· D1(s∗, t∗)

D2(s∗, t∗)
,

χ2(s, t, s∗, t∗) =
D3(s∗, t∗)N3(s, t)−N3(s∗, t∗)D3(s, t)

D1(s∗, t∗)N1(s, t)−N1(s∗, t∗)D1(s, t)
· D1(s, t)

D3(s, t)
· D1(s∗, t∗)

D3(s∗, t∗)
.
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Note that, since s, t, s∗, t∗ are independent variables, and since Z is not a plane, the
above rational functions are well-defined. Moreover, for every particular value (s0, t0) ∈
Λ of (s∗, t∗) the specialization of the rational functions are also well-defined. In addition,
since in the following there is no ambiguity on the dependency of gA on A, we simplify
the notation writing g instead of gA.

In this situation, we assume that we have also applied Method 1 to detect whether
Z is a cone. Then, we define Ω0 as the empty set if Z is not a cone and as Q−1(V ) if Z
is a cone of vertex V . Therefore, because of Corollary 3.4, we can assume in the sequel
that g = 1. Thus, we skip Steps 2 and 3 of Method 6. Now, we proceed with Step 4 of
Method 6. We have assumed that n1 and n2 (in Step 4 of Method 6) have been already
computed. So, it only remains to analyze the determination of m1 := deg(Φ2,3(A)).
Therefore, we apply Method 3 to Φ2,3(A)(s, t).

We assume that none of the projective curves defined by the non-constant polyno-
mials in {N1, N2, N3, D1, D2, D3} passes through (0 : 1 : 0). If this is not the case, we
perform a suitable affine change of coordinates in {s, t}. Note that, in this situation,
Φ2,3(A)(s, t) satisfies the conditions in Step 0 of Method 3, seeing the projective curves

in P2(K(s∗, t∗)) where K(s∗, t∗) is the algebraic closure of K(s∗, t∗). However, it might
happen for some particular values of {s∗, t∗} the condition fails. In order to control
this, we introduce the following set N∞. We take the homogenization (in the variables
{s, t}) of the numerators and denominators of χi(s, t, s

∗, t∗), and we substitute them
in (0 : 1 : 0). Observe that, as remarked above, the resulting polynomials are not
identically zero. Now, N∞ is the union of the zero sets in K2 of these polynomials.

In Step 1 of Method 3, we take χi(s, t, s
∗, t∗), i = 1, 2, and in Step 2 of Method 3, we

compute
Hi(s, t,Xi, s

∗, t∗) = Numer(χi − Xi) ∈ K[s∗, t∗,X1,X2, s][t].

For i = 1, 2, let Mi(s,X1,X2, s
∗, t∗) be the leading coefficient of Hi w.r.t. t. Then, we

define Ω1 as the zero set of all coefficients of M1 w.r.t. {s,X1,X2} union the zero set
of all coefficients of M2 w.r.t. {s,X1,X2} union N∞ .

In Step 3 of Method 3, the resultant polynomial R is computed. We observe that since
g = 1, R is not identically zero. We see R as a polynomial in K[s∗, t∗][s,X1,X2], and
hence we denote it by R(s,X1,X2, s

∗, t∗). Let W (X1,X2, s
∗, t∗) be the leading coefficient

of R w.r.t. s. Then, we define Ω2 as the zero set of all coefficients of W w.r.t. {X1,X2}.

In Step 4 of Method 3, first we express R as a polynomial in {X1,X2} as

R =
∑

(i,j)∈J

ai,j(s, s
∗, t∗)Xi

1Xj
2,

where we collect the non-zero coefficients of R w.r.t. {X1,X2}. We want to control the
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behavior of the primitive part under specializations, which essentially means to control
the content. More precisely, let

a(s, s∗, t∗) = gcd({ai,j | (i, j) ∈ J}) = Content{X1,X2}(R),

and let

ai,j(s, s
∗, t∗) =

ai,j(s, s
∗, t∗)

a(s, s∗, t∗)
.

Let N(s∗, t∗) be the leading coefficient of a w.r.t. s. We analyze (under specializations)
the gcd of {ai,j | (i, j) ∈ J}. We distinguish several cases depending on the cardinality
of J ; we observe that Card(J) 6= 1 since deg(Φ2,3(A)) > 0.

[Case 1] Let Card(J) = 2; say J = {(i0, j0), (i1, j1)}. We apply Lemma 3 in [11] to
ai0,j0 , ai1,j1 , seen as polynomials in K[s∗, t∗][s]. Let L0(s∗, t∗) be the leading coefficient
of ai0,j0 w.r.t. s, L1(s∗, t∗) be the leading coefficient of ai1,j1 w.r.t. s, and let S(s∗, t∗) =
Ress(ai0,j0 , ai1,j1). Then, we define Ω3 as the zero set of {L0, L1} union the zero set of
S, and Ω4 as the zero set of N (see above).

[Case 2] Let Card(J) > 2; say J = {(ik, jk)}k=1,...,`, with ` > 2. We apply Lemma 9 in
[6]. For convenience of the reader we recall here the part of that lemma that we will
use.

Lemma 4.1. (Lemma 9 in [6]) Let fi ∈ K[s∗, t∗][s] \ {0}, fi = f̄i · gcd(f1, . . . , fm),
i = 1, . . . ,m. Let (s0, t0) ∈ K2 be such that the leading coefficient of f1 w.r.t. s does not
vanish at (s0, t0). If Ress(f̄1, f̄2+

∑m
i=3 Wi−2f̄i)(s0, t0) 6= 0, where Wj, j = 1, . . . ,m−2,

are new variables, then gcd(f1, . . . , fm)(s0, t0, s) = gcd(f1(s0, t0, s), . . . , fm(s0, t0, s)).

Thus, we apply the lemma to {aik,jk}k=1,...,` seen as polynomials in K[s∗, t∗][s]. Let
L(s∗, t∗) be the leading coefficient of ai1,j1 w.r.t. s, and let

S(s∗, t∗,W1, . . . ,W`−2) = Ress

(
ai1,j1 , ai2,j2 +

∑̀
k=3

Wk−2aik,jk

)
.

We define Ω3 as the zero set of all coefficients of S w.r.t. {W1, . . . ,W`−2}, and Ω4 as
the zero set of L union the zero set of N .

Finally we take Ω = Ω0 ∪ · · · ∪ Ω4.

Note that, since Z is irreducible, and A(s∗, t∗) is a generic element of Z, we have
the following lemma.

Lemma 4.2. Let (s0, t0) ∈ Λ be such that

deg(Φ2,3(A(s0, t0))) = degs

(
R(s,X1,X2, s

∗, t∗)

a(s, s∗, t∗)

)
.
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It holds that A(s0, t0) is a simple point of Z.

We finish this subsection with the following theorem.

Theorem 4.3. ∀ (s0, t0) ∈ Λ \ Ω, A(s0, t0) is a simple point of Z.

Proof. Let (s0, t0) ∈ Λ \ Ω; throughout the proof, we denote A(s0, t0) by A0. Since
(s0, t0) ∈ Λ, then (s0, t0) 6∈ Ω4, and hence A0 is well defined and it is a point on Z.
Moreover, χi(s0, t0, s, t) are also well-defined. On the other hand, since (s0, t0) 6∈ Ω0,
then g(s, t, h1, h2, s0, t0) = 1. Note that since (s0, t0) 6∈ Ω1, then (s0, t0) 6∈ N∞ and hence
the conditions in Step 0, Method 3, are satisfied. Moreover, neither M1(s,X1,X2, s0, t0)
nor M2(s,X1,X2, s0, t0) vanish. Similarly, since (s0, t0) 6∈ Ω2, W (X1,X2, s0, t0) does not
vanish.
If we are in case 1, since (s0, t0) 6∈ Ω3 we get that L0(s0, t0) 6= 0 or L1(s0, t0) 6=
0, and S(s0, t0) 6= 0. Thus, by Lemma 3 in [11], we get that a(s, s0, t0) =
gcd(ai0,j0(s, s0, t0), ai1,j1(s, s0, t0)). Moreover, by well-know properties of resultants,
we get that (up to multiplication by a non-zero constant), R(s,X1,X2, s0, t0) =
Rest(H1(s, t,X1, s0, t0), H2(s, t,X2, s0, t0)). Furthermore, since W (X1,X2, s0, t0) 6= 0
(see above),

degs(R(s,X1,X2, s0, t0)) = degs(R(s,X1,X2, s
∗, t∗)).

On the other hand, (s0, t0) 6∈ Ω4 implies that degs(a(s, s∗, t∗)) = degs(a(s, s0, t0)).
Summarizing,

deg(Φ2,3(A0)) = degs(PrimPart{X1,X2}(R(s,X1,X2, s0, t0))) =

degs(PrimPart{X1,X2}(R(s,X1,X2, s
∗, t∗))) = deg(Φ2,3(A)).

Therefore, by Lemma 4.2, A0 is simple.
If we are in case 2, since (s0, t0) 6∈ Ω3 we get that S(s0, t0,W1, . . . ,W`−2) 6= 0. Since
(s0, t0) 6∈ Ω4 we know that L(s0, t0) 6= 0 and N(s0, t0) 6= 0. Thus, by Lemma 4.1, we
get that a(s, s0, t0) = gcd({ai,j(s, s0, t0) | (i, j) ∈ J}). From here the proof follows as in
the case 1.

Observe that, because of Theorem 4.3, Λ \Ω ⊂ F1. We finish the subsection, outlining
the method for computing Ω.

Method 7: Computation of Ω

Input: an affine rational surface Z ⊂ K3 different to a plane, and a rational parametriza-
tion (in reduced form) Q(s, t) of Z.

Output: the set Ω.

[Step 1] Compute (see Section 5) Φ2,3(A(s∗, t∗)) = (χ1(s, t, s∗, t∗), χ2(s, t, s∗, t∗)).
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[Step 2] Computation of Ω0: Apply Method 1 to Q to check whether Z is a cone. If it
is not a cone then Ω0 := ∅ else Ω0 := Q−1(V ) where V is the vertex of Z.
[Step 3] Computation of Ω1

[Step 3.1] Homogenize (w.r.t. {s, t}) the numerators and denominators of χi, and
substitute them in (0 : 1 : 0). Take N∞ as the union of the zero sets in K2 of these
polynomials.
[Step 3.2] Compute Hi = Numer(χi − Xi). Let Mi be the leading coefficient of Hi

w.r.t. t.
[Step 3.3] Ω1 is the zero set of all coefficients of M1 w.r.t. {s,X1,X2} union the zero
set of all coefficients of M2 w.r.t. {s,X1,X2} union N∞.

[Step 4] Computation of Ω2

[Step 4.1] Compute R := Rest(H1, H2) and its leading coefficient W w.r.t. s.
[Step 4.2] Ω2 is the zero set of all coefficients of W w.r.t. {X1,X2}.

[Step 5] Computation of Ω3 and Ω4

[Step 5.1] Compute the set {ai,j | (i, j) ∈ J} of all coefficients of R w.r.t. {X1,X2}.
[Step 5.2] Compute a = gcd({ai,j | (i, j) ∈ J}) and ai,j =

ai,j
a

.
[Step 5.3] Determine the leading coefficient N of a w.r.t. s.
[Step 5.4] If Card(J) = 2 (say J = {(i0, j0), (i1, j1)})

[Step 5.4.1] Compute the leading coefficient Lj of aij ,jj w.r.t. s (j = 0, 1) and
S = Ress(ai0,j0 , ai1,j1).
[Step 5.4.2] Ω3 is the zero set of {L0, L1} union the zero set of S.
[Step 5.4.3] Ω4 is the zero set of N .

[Step 5.5] If Card(J) > 2 (say J = {(ik, jk)}k=1,...,`)

[Step 5.5.1] Compute the leading coefficient L of ai1,j1 w.r.t. s and S =

Ress(ai1,j1 , ai2,j2 +
∑`

k=3 Wk−2aik,jk).
[Step 5.5.2] Ω3 is the zero set of all coefficients of S w.r.t. {W1, . . . ,W`−2}.
[Step 5.5.3] Ω4 is the zero set of L union the zero set of N .

[Step 6] Return Ω := Ω0 ∪ · · · ∪ Ω4.

Computing the Multiplicity in Ω \∆Q

We decompose Ω as union of irreducible closed sets; note that they are of dimension
less or equal 1. Let C be an irreducible curve in Ω. If C ⊂ ∆Q, there is nothing to do.
If not, we compute the intersection of ∆Q and C (note that ∆Q is empty or a plane
curve). This intersection would be either empty or finitely many points. For an open
subset of C, the degree of the corresponding map Φ2,3 would be invariant, and hence
all points in the open subset would generate points on S with the same multiplicity.
The complementary of this open subset is now either empty or a finite set of points.
So, if it is not empty, we apply the formula to each of the finitely many points in the
closed set as well as for those points in the zero-dimensional components of Ω.
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In order to compute the open subset of C, we do an analogous reasoning as in the
previous subsection. One may distinguish two cases:

[General case] We work over the field of rational functions K(C) of the curve (see [12]).
Let f(s, t) be the defining polynomial of C, then K(C) is the quotient field of K[s, t]/(f).
Then, we apply Method 6 to A(s, t), where s, t ∈ K(C) are the equivalent classes of
s, t respectively, i.e., t = t + (f), and s = s + (f) with (f) the ideal of f . We
recall that the arithmetic in the field K(C) can be executed by using the defining
polynomial of C. We observe that all computations can be carried out: we have to
compute gcds in K(C)[h1, h2, s, t] (which can be performed in the Euclidean domain
K(C)(h1, h2, s)[t]), resultants in the unique factorization domain K(C)[s,X1,X2][t] and
gcds in the Euclidean domain K(C)[s].

For each 1-dimensional component C of Ω we will get an open subset where all
points (i.e., parameter values) behave the same; that is all have the same multiplicity.
So each of these open subsets will be part of Fk for some k. The complementary of
these open sets are either empty or zero-dimensional. So we will have, in the worst
case, a set of finitely many parameter values to be classified. For each of them we
apply Method 6, and we determine their multiplicity. Finally, they are included in the
corresponding Fk.

[Rational case] If C is rational, we compute a proper normal rational parametrization
M(λ) of C (see [12], Section 6.3). Then, we apply Method 6 to H(λ) := Q(M(λ)); say
that H(λ) is expressed as:

H(λ) =

(
ϕ1(λ)

φ1(λ)
,
ϕ2(λ)

φ2(λ)
,
ϕ3(λ)

φ3(λ)

)
where gcd(ϕi, φi) = 1, i = 1, 2, 3. Note that Step 1 as well n1, n2 (in Steps 3, 4) were
already computed when determining Ω. Let gH(λ) be the corresponding gcd generated
by the parametric point H(λ) (see Section 3): In Step 2, we have to compute and
analyze gH(λ). We can assume that gH(λ) = 1, since the case gH(λ) 6= 1 corresponds to
the parameter values in C∩Ω0, and for these points one applies directly Step 3 in Method
6 to get that the multiplicity is always deg(Z) (see Theorem 3.2). Thus, we pass to Step
4, and hence it only remains to apply Method 3 to compute deg(Φ2,3(H(λ))), where λ
belongs to a non-empty open subset of K; namely those λ such that M(λ) ∈ C \ Ω0.
We observe that all computations can be carried out: we have to compute resultants
in the unique factorization domain K[λ, s,X1,X2][t] and gcds in the Euclidean domain
K(λ)[s].

Remark 4.4. Obviously, the genus zero case can be treated as the general case;
the fact is that K(C) turns to be K(λ). We have not analyzed, from the compu-
tational/complexity point of view, which method is better. Using the general case

21



option implies to work with equivalence classes and the length of the integer coeffi-
cients in the polynomial representatives tends to grow up. On the other hand, using
the rational case option, simplifies, in principle, the arithmetic in the field. However,
although the normal parametrization is not hard to achieve, the parametrization may
require algebraic extensions of the ground field or, instead, high length coefficients.

We finish this section with the outline of the algorithm that analyzes the multiplicity
under specialization.

Method 8: Computation of the multiplicity under specialization

Input:

• An affine rational surface Z ⊂ K3 different to a plane,

• A point A0 = (a, b, c) ∈ K3 such that A0 6∈ Z (apply Method 5),

• A rational parametrization (in reduced form)

Q(s, t) =

(
N1(s, t)

D1(s, t)
,
N2(s, t)

D2(s, t)
,
N3(s, t)

D3(s, t)

)
of Z, and such that none of the projective curves defined by each of the non-
constant polynomials in {N1, N2, N3, D1, D2, D3} passes through (0 : 1 : 0),

• A set Γ ⊆ K2. Set Θ as Θ := Γ \ ∆Q, where ∆Q is the algebraic set defined
over K by the denominators of Q(s, t) (that is, ∆Q is the algebraic set defined by
lcm(D1, D2, D3)).

• n2 := deg(Q) (apply Method 2) and n1 := deg(Φ2,3(A0)) (apply Method 3).

Output: A decomposition of Θ of the form ∪`k=1Fk, such that if (s0, t0) ∈ Fk then
A(s0, t0) is a point of Z of multiplicity k.

[Step 0] If dim(Θ) = 0 then apply, to each point in Θ, Method 6 (observe that A0, n1, n2

are given) and include the points in the corresponding Fk. If dim(Θ) = 1, take Ω as
the Zariski closure of Θ and go to Step 4.
[Step 1] Let Ω := ∪4

i=0Ωi be the output of the Method 7 applied to Q(s, t). Include
Θ \ Ω in F1.
[Step 2] Decompose Ω into irreducible components.
[Step 3] For each point A at a zero-dimensional component of Ω, if A 6∈ Ω4 then apply
Method 6 to compute α = mult(A,Z), and include A in Fα.
[Step 4] For each 1-dimensional irreducible component C of Ω, proceed as we have
described (general case) in this section. This will generate an open subset C∗ of C
where the multiplicity is invariant and that would be included in the corresponding Fk.
For the finitely many points in the C \ C∗, proceed as in Step 3. Alternatively, if C is
rational one may proceed as described in the genus zero case.
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5 Computing the P-singularities

In this section, we apply the previous results to the resolution of the problem stated in
the introduction. We first will deal with the affine singularities and afterwards, we will
treat the singularities at infinity. For this purpose, in this section, we work with the
projective surface S and the projective parametrization P(s, t, v) introduced in Section
2. Furthermore, for i = 1, 2, 3, 4, we consider the affine parametrizations Pi(s, t) and
the affine surfaces Si associated to P(s, t, v), as described in Section 2. Moreover, let
B, Ba be the set of projective and affine base points of P(s, t, v) (see Section 2), and
let ∆i be the algebraic sets introduced in Lemma 2.2.

Affine P-singularities

In this section, we see K2 embedded in P2(K) by means of the natural map

j : K2 → P2(K), (s0, t0) 7→ (s0 : t0 : 1).

The basic idea consists in applying Method 8 to a generic point on S. For this purpose,
we proceed as follows.

First Level. We consider the set Λ1 := K2 \∆4, and we decompose it as

Λ1 := ∪`1k=1F
1
k

such that if (s0, t0) ∈ F1
k then P4(s0, t0) is a point of S4 of multiplicity k.

Second Level. If ∆4\Ba 6= ∅, we consider the set Λ2 := ∆4\∆3 and we decompose
it as

Λ2 := ∪`2k=1F
2
k

such that if (s0, t0) ∈ F2
k then P3(s0, t0) is a point of S3 of multiplicity k.

Third level. If Λ2 \ Ba 6= ∅ we consider the set Λ3 := (∆4 ∩ ∆3) \ ∆2 and we
decompose it as

Λ3 = ∪`3k=1F
3
k

such that if (s0, t0) ∈ F3
k then P2(s0, t0) is a point of S2 of multiplicity k.

Fourth Level. If Λ3 \Ba 6= ∅ we consider the set Λ4 := (∆4 ∩∆3 ∩∆2) \∆1 and
we decompose it as

Λ4 = ∪`4k=1F
4
k

such that if (s0, t0) ∈ F4
k then P1(s0, t0) is a point of S1 of multiplicity k.

Note that at this point, Λ4 \ Ba = ∅. Moreover j(∪4
i=1F

i
k) ⊂ Sk (see the

definition of Sk in the problem statement in Section 1).
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In order to deal with the first level, we apply Method 8 to the parametrization
P4(s, t) of the affine surface S4, taking A(s∗, t∗) = P4(s∗, t∗). Let us see how to proceed
with the second, third and fourth levels. In level 2, let ∆4 \ Ba 6= ∅, then we want
to decompose Λ2 (i.e., ∆4 \ ∆3). We observe that Λ2 would be either empty or 1-
dimensional; since ∆i are either empty or plane curves. Clearly, the interesting case is
when dim(Λ2) = 1. Then, for each irreducible component of Λ2 we proceed as described
in Section 4. Finally, note that the same argument and strategy is valid for the third
and the fourth levels.

P-singularities at infinity

We show how to proceed with the Step 2 of our strategy (see Section 2). So, first we
analyze whether A = (0 : 1 : 0) is a P-singularity. For this purpose, we check whether
A ∈ B. If A 6∈ B, then at least one of the polynomials pi of P(s, t, v) does not vanish
on A (say w.l.o.g. p4). Then, we work with the affine parametrization of S4 obtained
by taking t = 1 and dehomogenizing P(s, t, v) w.r.t. to the fourth component. To
distinguish this new affine parametrization of S4 from P4(s, t), we denote it by P t

4(s, t).
Similarly, if necessary, we introduce P t

i(s, t) with i = 1, 2, 3. Now, we apply Method 6
to compute

mult((0 : 1 : 0)) = mult(P t
4(0, 0),S4) = mult(P(0, 1, 0),S).

Now, it only remains to analyze the points in E = {(1 : λ0 : 0) |λ0 ∈ K}. For that,
first we determine those points in E that are base points, namely

E∗ = {(1 : λ0 : 0) | gcd(p1(1, λ, 0), p2(1, λ, 0), p3(1, λ, 0), p4(1, λ, 0))(λ0) = 0}

There exists i such that pi(1, λ, 0) is not identically zero, since otherwise v would divide
gcd(p1, . . . , p4), which is a contradiction. Let us assume w.l.o.g. that p4(1, λ, 0) is not
identically zero. We then introduce the finite set

E∗∗ = {(1 : λ0 : 0) | p4(1, λ0, 0) = 0} \ E∗,

and we proceed to compute the multiplicity of each (1 : λ0 : 0) ∈ E∗∗. For that, we
observe that there exists j 6= 4 such that pj(1, λ0, 0) 6= 0, and we apply the multiplicity
formula using the dehomogenization of P(s, t, v) w.r.t. the j-component.

To analyze the open subset E \E∗∗, we work with the new affine parametrizations of S4,
namely the parametrization obtained by taking s = 1 and dehomogenizing P(s, t, v)
w.r.t. to the fourth component. We denote it by Ps

4(s, t). Similarly, if necessary, we
introduce Ps

i (s, t) with i = 1, 2, 3. Now, one has to proceed as in Section 4, with the
rational curve Q(λ) = (λ, 0).
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Algorithm

In the following, we summarize all the previous ideas to derive an algorithm. For
this purpose, let S ⊂ P3(K) be a rational projective surface, different to a plane, and
P(s, t, v) a parametrization of S expressed as

P(s, t, v) = (p1(s, t, v) : p2(s, t, v) : p3(s, t, v) : p4(s, t, v))

where pi ∈ K[s, t, v] are homogeneous polynomials of the same degree, and
gcd(p1, p2, p3, p4) = 1. Let B the zero set in P2(K) of {p1, . . . , p4}. Then, the al-
gorithm decomposes P2(K) \B as

P2(K) \B = ∪`k=1Sk

such that if (s0 : t0 : v0) ∈ Sk then P(s0, t0, v0) is a point of S of multiplicity k.

As already remarked in Section 2, we assume that none of the polynomials pi is
zero or, more generally, that there do not exist pi, pj and λ ∈ K such that pi = λpj.
Note that this excluded situation corresponds to a plane, and hence S1 = P2(K).

In addition, we use the notation introduced in Section 2, namely, the affine surfaces
Si, as well as and the affine rational parametrizations Pi(s, t),P t

i(s, t),Ps
i (s, t) (see

subsection on singularities at infinity in Section 5). In this situation, the algorithm is
as follows.

Algorithm

Input: A projective rational surface S ⊂ P3(K), different to a plane, parametrized by

P(s, t, v) = (p1(s, t, v) : p2(s, t, v) : p3(s, t, v) : p4(s, t, v))

where pi ∈ K[s, t, v] are homogeneous polynomials of the same degree, and
gcd(p1, p2, p3, p4) = 1.
Output: A decomposition of P2(K) \B (B is the zero set in P2(K) of {p1, . . . , p4}) as

P2(K) \B = ∪`k=1Sk

such that if (s0 : t0 : v0) ∈ Sk then P(s0, t0, v0) is a point of S of multiplicity k.

[Preparatory Steps]

[Step 0] If any of the projective curves defined by the non-constant numerators or
denominators of the parametrization P4 passes through (0 : 1 : 0) we perform a suitable
affine linear change in the parameters {s, t}.
[Step 1] Apply Method 2 to compute n2 := deg(P4) (see Section 3).

[Step 2] Apply Method 5 to determine an affine point, say A0 ∈ K3, out of the affine
surface S4 (see Section 3); take A0 with non-zero components such that if the algorithm,
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in subsequent steps, requires a point in K3\Si with i 6= 4 no further computation would
be needed (see Remark 3.3), and apply Method 3 to compute n1 := deg(Φ2,3(A0)) (see
Section 3).

[Step 3] For i = 1, . . . , 4, let ∆i be as in Lemma 2.2, and Ba =
⋂4
i=1 ∆i.

[P-affine singularities (First level)]

[Step 4] Apply Method 8 to S4, P4(s, t), Γ := K2, A0 (see Step 2) and n1, n2 (see Steps
1 and 2). Let K2 \ ∆4 = ∪`k=1Fk be the output of Method 8, then j(Fk) ⊂ Sk (see
Section 4).

[P-affine singularities (Second, Third and Fourth Level)]

[Step 5] If ∆4 \Ba = ∅ (see Step 3) go to Step 8 else proceed as follows:
[Step 5.1] If ∆4 \∆3 = ∅ go to Step 6.
[Step 5.2] Apply Method 8 taking: P3(s, t) instead of Q(s, t), S3 instead of Z, and
Γ as ∆4 \∆3. For those sets Fk generated by this process, do j(Fk) ⊂ Sk.

[Step 6] If (∆4 ∩∆3) \Ba = ∅ go to Step 8 else proceed as follows:
[Step 6.1] If (∆4 ∩∆3) \∆2 = ∅ go to Step 7.
[Step 6.2] Apply Method 8 taking: P2(s, t) instead of Q(s, t), S2 instead of Z, and
Γ as (∆4 ∩∆3) \∆2. For those sets Fk generated by this process, do j(Fk) ⊂ Sk.

[Step 7] If (∆4 ∩∆3 ∩∆2) \Ba = ∅ go to Step 8 else proceed as follows:
[Step 7.1] If (∆4 ∩∆3 ∩∆2) \∆1 = ∅ go to Step 8.
[Step 7.2] Apply Method 8 taking: P1(s, t) instead of Q(s, t), S1 instead of Z, and Γ
as (∆4 ∩∆3 ∩∆2) \∆1. For those sets Fk generated by this process, do j(Fk) ⊂ Sk.

[P singularities at infinity]

[Step 8] If (0 : 1 : 0) 6∈ B apply Method 6 to compute α := mult(P t
4(0, 0),S4) and

include (0 : 1 : 0) in Sα; we are assuming that p4(0, 1, 0) 6= 0, otherwise take other pi,
say pi0 , such that pi0(0, 1, 0) 6= 0, and work with pi0 instead of p4.
[Step 9] Check whether p4(1, λ, 0) is not identically zero. If it does vanish, find pi not
vanishing at (1 : λ : 0), say pi0 , and in the following steps work with pi0 instead of
p4. Set E∗ := {(1, λ0) | gcd(p1(1, λ, 0), p2(1, λ, 0), p3(1, λ, 0), p4(1, λ, 0))(λ0) = 0}, and
E∗∗ := {(1, λ0) | p4(1, λ0, 0) = 0} \ E∗.
[Step 10] For each (1 : λ0 : 0) such that (1, λ0) ∈ E∗∗, since (1 : λ0 : 0) 6∈ B find pj such
that pj(1, λ0, 0) 6= 0, and compute α := mult(Ps

j (λ0, 0),Sj). Include (1 : λ0 : 0) in Sα.
[Step 11] Apply Method 8 taking: Ps

4(s, t) instead of Q(s, t), S4 instead of Z and Γ as
{(1, λ0) |λ0 ∈ K} \ E∗∗. For those sets Fk generated by this process, do j(Fk) ⊂ Sk.
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6 Examples

In this section we illustrate our algorithm by two examples. The first one is a 2
degree surface parametrization, while the second one is a bicubic. In the first example
the (parameter) singular locus is real while, in the second, two complex lines and a
triple real singularity appear. Computations in the examples were carried out with the
mathematical software Maple. We have implemented some modules of the algorithm,
but we do not have a self-contained implementation.

Example 6.1. We consider the parametrization

P(s, t, v) =
(
t2 : t2 + s2 + v2 : (s + 2 t) v : (t + s) v

)
of the complex projective surface S. One can easily check that S is not a plane. In
addition, the four affine parametrizations associated to the projective parametrization,
as described in Section 2, are

P1 =

(
t2 + s2 + 1

t2
,
s+ 2 t

t2
,
s+ t

t2

)

P2 =

(
t2

t2 + s2 + 1
,

s+ 2 t

t2 + s2 + 1
,

s+ t

t2 + s2 + 1

)
P3 =

(
t2

s+ 2 t
,
t2 + s2 + 1

s+ 2 t
,
t+ s

s+ 2 t

)

P4 =

(
t2

s+ t
,
t2 + s2 + 1

s+ t
,
s+ 2 t

s+ t

)
.

We apply the algorithm. P4 satisfies the hypotheses in Step 0. In Step 1, one gets
n2 := 1, and in Step 2 we get A0 := (1, 1, 1) and n1 := 4. In Step 3, we get that

• ∆1 is the line t = 0,

• ∆2 is the complex circle t2+s2 = −1,

• ∆3 is the line s+ 2t = 0,

• ∆4 is the line s+ t = 0,

that are the curves defined by the denominators of Pi(s, t). Note that
Ba = B = ∅. In Step 4, we apply Method 8 with the following input:
S4, A0 = (1, 1, 1),P4(s, t),Γ := C2, n2 = 1, n1 = 4.

[Execution of Method 8, for Step 4, starts] Since dim(Θ) = 2, we skip Step 0 of Method
8. In Step 1 of Method 8, we apply Method 7 to compute Ω (in the next, we refer to
steps in Method 7):

◦ In Step 2, we get that Ω0 = ∅. In Step 3, we compute Ω1. In Step 3.1, we
get that N∞ is union of the lines t∗ + s∗ = 0 and s∗ = 0. In Step 3.2, we get
M1 = −s∗− t∗+ X1(s∗+ t∗), M2 = X2(s∗+ t∗). So, in Step 3.3, we conclude that

Ω1 = {(s∗, t∗) ∈ C2 | t∗ + s∗ = 0} ∪ {(s∗, t∗) ∈ C2 | s∗ = 0}.

◦ For the computation of Ω2, in Step 4.1, we get W = X2
2(s∗ + t∗)4. Therefore,

Ω2 = {(s∗, t∗) ∈ C2 | t∗ + s∗ = 0}.
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◦ For computing Ω3 and Ω4, in Step 5.1, we get that R has 6 non-zero coefficients
w.r.t. {X1,X2}. Moreover, a = (s∗+ t∗)2(s−s∗) (see Step 5.2) and N = (s∗+ t∗)2

(see Step 5.3). Since Card(J) = 6 we go through Step 5.5. Then (see Step 5.5.1),
ai1,j1 = s(s∗2 + t∗2)− s∗, L = s∗2 + t∗2, and

S = 2t∗3s∗4 + t∗s∗6 + 2t∗3W1s
∗4 + 2t∗5W1s

∗2 + 3s∗6t∗3W1 + s∗8W1t
∗+ 3s∗4t∗5W1−

2s∗5W2t
∗+ s∗6W4 + s∗8W2− s∗8W4− 2s∗7W1 + t∗5s∗2− 2s∗3W2t

∗3 + 2s∗2W2t
∗4 +

2s∗4W2t
∗2−W4s

∗2t∗4 +2W4s
∗3t∗3 +W1s

∗4t∗+5s∗4W2t
∗4 +4s∗6W2t

∗2−s∗6W3t
∗−

2s∗4W3t
∗3 − 3s∗6W4t

∗2 − 3s∗4W4t
∗4 + 2s∗5W4t

∗ − 4s∗5W1t
∗2 + t∗7W1s

∗2 +
2t∗6s∗2W2 − t∗5W3s

∗2 − t∗6W4s
∗2 − 2t∗4W1s

∗3 − 2W1s
∗3t∗2 +W1s

∗2t∗3.

In Step 5.5.2 and Step 5.5.3, we get

Ω3 = {(s∗, t∗) ∈ C2 | t∗ = 0}, and

Ω4 = {(s∗, t∗) ∈ C2 | s∗2 + t∗2 = 0} ∪ {(s∗, t∗) ∈ C2 | t∗ + s∗ = 0}.

◦ In Step 6 of Method 7, we get

Ω = ∪4
i=0Ωi = {(s∗, t∗) ∈ C2 | t∗ + s∗ = 0} ∪ {(s∗, t∗) ∈ C2 | s∗ = 0}∪

{(s∗, t∗) ∈ C2 | t∗ = 0} ∪ {(s∗, t∗) ∈ C2 | s∗2 + t∗2 = 0}.

At this point, we have computed the main set of simple points, that is, we know that
parameter values in C2 \Ω are simple. We proceed to study the parameter values in Ω.
Step 3 (Method 8) is not needed, and in Step 4 (Method 8) we get that all components
are rational; indeed lines. So we go through the genus zero case. Then, for each of the
lines we execute Step 4 (Method 8) that implies the application of Method 6 (in the
next, we refer to steps in Method 6):

• Let C be the line t∗ = 0. We consider the normal proper parametrization

Q(λ) = (λ, 0), and H(λ) =

(
0,

1 + λ2

λ
, 1

)
.

Now, we apply Method 6 to the generic point H(λ). A0 = (1, 1, 1) was already
computed. Moreover, since Ω0 = ∅, then gH(λ) = 1 for λ 6= 0. So, we perform
Step 4 (Method 6) dealing generically with H(λ). We already know that n1 = 4
and n2 = 1. So it only remains to compute m1 (see Step 4.1, Method 6), that is,
to apply Method 3 to compute deg(Φ2,3(H(λ))). We observe that Step 0 (Method
3) holds for all λ 6= 0. We get PrimPart{X1,X2}(R(s,X1, X2)) = X2

2λ
2s−X2

2λs
2−

X2
2λ+X2

2s+X2λ
2 +X1λ+X2 − λ (see Steps 3 and 4 in Method 3), and hence
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m1 = 2 for λ 6= 0; note that for this particular H(λ) all steps specialize properly
when λ 6= 0. Thus, Method 6 outputs

mult((λ : 0 : 1)) = mult(H(λ),S4) =
n1 −m1

n2

= 2, with λ 6= 0.

So, we have computed the multiplicity for affine parameter values in C \ {(0, 0)},
and, with the exception of one point that we have not analyzed yet, this line is
of double points.

• Let C be the line s∗ = 0. We consider the normal proper parametrization

Q(λ) = (0, λ), and H(λ) =

(
λ,

1 + λ2

λ
, 2

)
.

We reason as above. But, when applying Step 0 of Method 3, one realizes that a
linear change in {s, t} is required. We change (s, t) by (s+ t, t− s). This implies
that Q(λ) and H(λ) change to

Q(λ) = (λ,−λ), and H(λ) =

(
−2λ,

4λ2 + 1

−2λ
, 2

)
.

In this situation, one gets that m1 = 3 for λ 6= 0. Thus, Method 6 outputs

mult((0 : λ : 1)) =
n1 −m1

n2

= 1, with λ 6= 0.

So, we have computed the multiplicity for affine parameter values in C \ {(0, 0)},
and, with the exception of one point that we have not analyzed yet, this line is
of simple points.

• The next curve is precisely ∆4. So, we postpone its analysis to further levels.

• Let C be the lines s∗± ı t∗ = 0; we treat both curves simultaneously. We consider
the normal proper parametrization

Q(λ) = (± ı λ, λ), and H(λ) =

(
λ2

λ± ı λ
,

1

λ± ı λ
,
± ı λ+ 2λ

λ± ı λ

)
.

Reasoning as above, we get that m1 = 3. Therefore, mult((± ı λ : λ : 1)) = 1,
for λ 6= 0. So, we have computed the multiplicity for affine parameter values in
C \ {(0, 0)}, and, with the exception of one point that we have not analyzed yet,
these two lines are of simple points.
[Execution of Method 8 ends, and hence Step 4 of the algorithm]

29



At this point, we have analyzed C2 \ ∆4, that is, all affine points but those where
the denominator of P4(s, t) vanishes. In order to study these points, we continue
with Step 5 of the algorithm. ∆4 ∩ ∆3 = {(0, 0)}. Since ∆4 \ Ba 6= ∅ and
∆4 \∆3 6= ∅ we go to Step 5.2 of the algorithm. Thus, we apply Method 8 with input:
P3(s, t),S3,Γ := ∆4 \∆3, A0 = (1, 1, 1), n1 = 4, n2 = 1.

[Execution of Method 8, for Step 5.2, starts] Since dim(Θ) = 1, we apply Step 4
of Method 8 to the line ∆4 that implies the application of Method 6. For this purpose,
we consider the parametrization Q(λ) = (−λ, λ) and H(λ) = P3(Q(λ)). Now, we
apply Method 6 to the generic point H(λ). A0 = (1, 1, 1) was already computed.
Moreover, since Ω0 = ∅, then gH(λ) = 1 for λ 6= 0. So, we perform Step 4 (Method
6) dealing generically with H(λ). We already know that n1 = 4 and n2 = 1. So it
only remains to compute m1 (see Step 4.1, Method 6), that is, to apply Method 3 to
compute deg(Φ2,3(H(λ))). We observe that for this particular H(λ) all steps specialize
properly when λ 6= 0. Thus, Method 6 outputs

mult((−λ : λ : 1)) = mult(H(λ),S2) =
n1 −m1

n2

= 1, with λ 6= 0.

So, we have computed the multiplicity for affine parameter values in ∆4 \ ∆3, and,
with the exception of one point that we still have not analyzed, the curve ∆4 is of
simple points.
[Execution of Method 8 ends, and hence Step 5 of the algorithm]

It only remains, in terms of affine values, to analyze the origin. In Step 6 of
the main algorithm, since (∆4∩∆3)\∆2 = {(0, 0)}, we go to Step 6.2, and we compute
the multiplicity of P2(0, 0) = (0, 0, 0) using P2. We get

mult((0 : 0 : 1)) = mult((0, 0, 0),S2) = 3.

Since ∆4 ∩ ∆3 ∩ ∆2 = ∅, we skip Step 7, and we pass to Step 8. Therefore, we have
finished the analysis of the affine points and we study the points at infinity. For this
purpose, in Step 8, we first observe that B = ∅. Moreover, since p4(0, 1, 0) = 0 but
p1(0, 1, 0) 6= 0 we compute mult(P t

1(0, 0),S1) by applying Method 6. One gets that
m1 := deg(Φ2,3(P t

1(0, 0))) = 2. So,

mult((0 : 1 : 0)) = mult(P t
1(0, 0),S1) =

n1 −m1

n2

= 2.

In Step 9, we observe that p4(1, λ, 0) = 0 but p1(1, λ, 0) = λ2. So, in the following, we
work with p1 instead of p4. Moreover, we get that E∗ = ∅, and E∗∗ = {(1, 0)}. In Step
10, we need to analyze (1 : 0 : 0). We do it using Ps

2(s, t) to get

mult((1 : 0 : 0)) = mult((0, 0, 0),S2) = 3.
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In Step 11, we apply Method 8 with input: S1,Ps
1(s, t), A0 = (1, 1, 1), n1 = 4, n2 = 1,

and Γ = {(1, λ) |λ 6= 0}. We get

mult((1 : λ : 0)) = mult

((
1 + λ2

λ2
, 0, 0

)
,S1

)
= 2, for λ 6∈ {0, 1,−1}.

So it only remains to analyze (1 : 1 : 0), (1 : −1 : 0). We apply Method 6 with P1 to
get

mult((1 : 1 : 0)) = 1, mult((1 : −1 : 0)) = 1.

Summarizing P2(C) is decomposed as P2(C) = ∪3
k=1Sk, where

1. S1 = {(s : t : 1) | t 6= 0},

2. S2 = {(s : t : 0) | t 6= 0} ∪ {(s : 0 : 1) | s 6= 0},

3. S3 = {(1 : 0 : 0), (0 : 0 : 1)}.

Example 6.2. We consider the parametrization P(s, t, v) =(
198s3 + 196t3 − 372v3 : −89s3 − 89t3 + 135v3 : 189t3 + 3t2s + 3ts2 + 189s3 − 372v3 : s3 + t3

)
of the complex projective surface S. One can easily check that S is not a plane. In
addition, the four affine parametrization associated to the projective parametrization,
as described in Section 2, are

P1 =

(
−89s3 − 89t3 + 135

198s3 + 196t3 − 372
,

189t3 + 3t2s+ 3ts2 + 189s3 − 372

198s3 + 196t3 − 372
,

s3 + t3

198s3 + 196t3 − 372

)

P2 =

(
198s3 + 196t3 − 372

−89s3 − 89t3 + 135
,

189t3 + 3t2s+ 3ts2 + 189s3 − 372

−89s3 − 89t3 + 135
,

s3 + t3

−89s3 − 89t3 + 135

)
P3 =

(
198s3 + 196t3 − 372

189t3 + 3t2s+ 3ts2 + 189s3 − 372
,

−89s3 − 89t3 + 135

189t3 + 3t2s+ 3ts2 + 189s3 − 372
,

s3 + t3

189t3 + 3t2s+ 3ts2 + 189s3 − 372

)
P4 =

(
198s3 + 196t3 − 372

s3 + t3
,
−89s3 − 89t3 + 135

s3 + t3
,

189t3 + 3t2s+ 3ts2 + 189s3 − 372

s3 + t3

)
.

We apply the algorithm to P(s, t, v). P4 satisfies the hypotheses in Step 0. In Step 1,
one gets n2 := 3 (observe that this means that the parametrization is not proper), and
in Step 2 we get A0 := (1, 1, 1) and n1 := 9. In Step 3, we get that

• ∆1 is the cubic 198s3 + 196t3 − 372 = 0,
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• ∆2 is the cubic −89s3 − 89t3 + 135 = 0,

• ∆3 is the cubic 189t3 + 3t2s+ 3ts2 + 189s3 − 372 = 0, and

• ∆4 is the cubic s3 + t3 = 0.

that are the curves defined by the denominators of Pi(s, t). Note that
Ba = B = ∅. In Step 4, we apply Method 8 with the following input: S4,
P4(s, t), A0 = (1, 1, 1), n1 = 9, n2 = 3,Γ = C2.

[Execution of Method 8, for Step 4, starts] Since dim(Θ) = 2, we skip Step 0 of Method
8. In Step 1 of Method 8, we apply Method 7 to compute Ω (in the next, we refer to
steps in Method 7):

◦ In Step 2, we get that Ω0 = ∅. In Step 3, we compute Ω1. We get that

Ω1 = {(s∗, t∗) ∈ C2 | (s∗3 − 186)(−s∗t∗2 − s∗2t∗ + 124) = 0}.

◦ Step 4 outputs Ω2 = {(s∗, t∗) ∈ C2 | t∗3 + s∗3 = 0}.

◦ For computing Ω3 and Ω4, in Step 5.1, we get that R has 10 non-zero coefficients
w.r.t. {X1,X2}. Since Card(J) = 10 we go through Step 5.5, and in Step 5.5.2
and Step 5.5.3, we get

Ω3 = {(s∗, t∗) ∈ C2 | (t∗2 + s∗t∗ + s∗2)(s∗ + t∗) = 0}, and

Ω4 = {(s∗, t∗) ∈ C2 | t∗3 + s∗3 = 0} ∪ {(s∗, t∗) ∈ C2 | s∗ + t∗ = 0}.

◦ In Step 6 of Method 7, we get Ω = ∪4
i=0Ωi =

{(s∗, t∗) ∈ C2 | (s∗3−186)(−s∗t∗2−s∗2t∗+124) = 0}∪{(s∗, t∗) ∈ C2 | t∗3+s∗3 = 0}∪

{(s∗, t∗) ∈ C2 | (t∗2 + s∗t∗ + s∗2)(s∗ + t∗) = 0} ∪ {(s∗, t∗) ∈ C2 | s∗ + t∗ = 0}.

Therefore in Step 2 of Method 8, we get

Ω = {(s∗, t∗) ∈ C2 | s∗ + t∗ = 0} ∪ {(s∗, t∗) ∈ C2 | s∗ ± 1

2
(
√

3 ı ∓ 1)t∗ = 0}

∪{(s∗, t∗) ∈ C2 | s∗ − 1

2
(−1±

√
3 ı )t∗ = 0} ∪ {(s∗, t∗) ∈ C2 | − s∗t∗2 − s∗2t∗ + 124 = 0}

∪{(s∗, t∗) ∈ C2 | s∗ − 1861/3 = 0} ∪ {(s∗, t∗) ∈ C2 | s∗ − 1861/3

2
(−1± ı

√
3) = 0}.

At this point, we have computed the main set of simple points, that is, we know that
parameter values in C2 \ Ω are simple. We proceed to study the parameter values
in Ω. Step 3 (Method 8) is not needed, and in Step 4 (Method 8) we get that all
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components are rational (in fact, lines) except the cubic defined by the polynomial
−s∗t∗2 − s∗2t∗ + 124. So, in Step 4 (Method 8), we go through the genus zero case for
each of the lines, and for the cubic, we work over the field of rational functions. In
any case, this implies the application of Method 6 (in the following, we refer to steps
in Method 6).

• The first two sets are included in ∆4. So, we postpone its analysis to further
levels.

• Let C be the line s∗− 1
2
(−1 +

√
3 ı )t∗ = 0; similarly for s∗− 1

2
(−1−

√
3 ı )t∗ = 0.

We consider the normal proper parametrization Q(λ) = (1
2
(−1 +

√
3 ı )λ, λ), and

H(λ) =

(
197λ3 − 186

λ3
,
−(178λ3 − 135)

2λ3
,
3(125λ3 − 124)

2λ3

)
.

Now, we apply Method 6 to the generic point H(λ). This implies the application
of Method 3 to compute m1 := deg(Φ2,3(H(λ))). We get m1 = 3 for λ 6= 0;
for the particular case where λ is a root of λ3 = 186 or of 3λ3 + 372 = 0, the
conditions in Step 0 (Method 3) do not hold, and a linear transformation in {s, t}
is required getting also m1 = 3. Summarizing, Method 6 outputs, for λ 6= 0,

mult(((−1/2± ı
√

3/2)λ : λ : 1)) = mult(H(λ),S4) =
n1 −m1

n2

= 2.

So, we have computed the multiplicity for affine parameter values in C \ {(0, 0)},
and, with the exception of one point that we still have not analyzed, the line is
of double points.

• Let C be the line s∗ = 3
√

186. We consider the normal proper parametrization
Q(λ) =

(
3
√

186, λ
)

and H(λ) = P4(Q(λ)); H(λ) is defined for λ 6= − 3
√

186. Now,
we apply Method 6 to the generic point H(λ). This implies the application of
Method 3 to compute m1 := deg(Φ2,3(H(λ))). Conditions in Step 0 (Method 3)
do not hold, and a linear transformation in {s, t} is required. We change (s, t)
by (t, s). In this situation, the conditions in Step 0 (Method 3) hold if λ is not a

root of 372− 3 3
√

186
2
λ− 3 3

√
186λ2 = 0; these parameter values, i.e for the roots

of the previous polynomial, are treated directly using Method 6. Summarizing
we that, for λ 6= − 3

√
186, m1 = 6, and hence Method 6 outputs

mult((
3
√

186 : λ : 1)) = 1, with λ 6= − 3
√

186.

So, we have computed the multiplicity for affine parameter values in C \
{( 3
√

186,− 3
√

186)}, and, with the exception of one point that we still have not
analyzed, the line is of simple points.
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• Let C be the line s∗ =
3√186

2
(−1 + ı

√
3); similarly for s∗ =

3√186
2

(−1− ı
√

3). We
consider the normal proper parametrization

Q(λ) =

(
3
√

186

2
(−1±

√
3), λ

)
, and H(λ) = P4(Q(λ)).

H(λ) is defined for λ 6= − 3
√

186. Now, we apply Method 6 to the generic
point H(λ). This implies the application of Method 3 to compute m1 :=
deg(Φ2,3(H(λ))). Conditions in Step 0 (Method 3) do not hold, and a lin-
ear transformation in {s, t} is required. We change (s, t) by (t, s). In this
situation, the conditions in Step 0 (Method 3) hold if λ is not a root of

744 + 3 ı 3
√

186
2√

3λ − 3 ı 3
√

186
√

3λ2 + 3 3
√

186
2
λ + 3 3

√
186λ2 = 0; these param-

eter values, i.e for the roots of the previous polynomial, are treated directly using
Method 6. Summarizing we that, for λ 6= − 3

√
186, m1 = 6, and hence Method 6

outputs

mult((
3
√

186

2
(−1± ı

√
3) : λ : 1)) = 1, with λ 6= − 3

√
186.

So, we have computed the multiplicity for affine parameter values in C \
{(

3√186
2

(−1 ± ı
√

3),− 3
√

186)}, and, with the exception of two points that we
still have not analyzed, these two lines are of simple points.

• Let C be the cubic s∗t∗2 + s∗2t∗ = 124. In this case, since C is not rational, we
work over the field of rational functions C(C). For this purpose, we first consider
Q(λ, β) = (λ, β), and H(λ, β) = P4(λ, β), where f(λ, β) = −λβ2 − λ2β + 124,
and we apply Method 8 replacing A by H(λ, β), where f(λ, β) = 0. Reasoning
as in the previous cases, but using the arithmetic in the field C(C) (that is, we
compute remainders with the polynomial f(λ, β)), we get that

mult((λ : β : 1)) = mult(H(λ, β),S4) = 1, with (λ, β) such that f(λ, β) = 0.

So, also points in the cubic are simple points.
[Execution of Method 8 ends, and hence Step 4 of the algorithm]

At this point, we have analyzed C2 \∆4; observe that the excluded points in the above

analysis, namely (0, 0), ( 3
√

186,− 3
√

186), (
3√186

2
(−1 ± ı

√
3),− 3

√
186), belong to ∆4. In

order to analyze the points of the denominator curve ∆4, we continue with Step 5 of the
algorithm. Since ∆4\Ba 6= ∅ and ∆4\∆3 6= ∅ we go to Step 5.2 of the algorithm. Thus,
we apply Method 8 with input: P3(s, t),S3,Γ := ∆4 \∆3, A0 = (1, 1, 1), n1 = 9, n2 = 3.

[Execution of Method 8, for Step 5.2, starts] Since dim(Θ) = 1, we apply Step 4
of Method 8 to ∆4 that implies the application of Method 6. Observe that ∆4 is the
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union of the lines s+ t = 0, s+ (1/2)(
√
−3−1)t = 0 and s− (1/2)(

√
−3 + 1)t = 0. For

this purpose, and for each line, we consider the parametrization Q(λ) of the line and
H(λ) = P3(Q(λ)). Then, we apply Method 6 to the generic point H(λ). A0 = (1, 1, 1)
was already computed. Moreover, since Ω0 = ∅, then gH(λ) = 1 for λ 6= 0. So, we
perform Step 4 (Method 6) dealing generically with H(λ). We already know that
n1 = 9 and n2 = 3. So it only remains to compute m1 (see Step 4.1, Method 6), that
is, to apply Method 3 to compute deg(Φ2,3(H(λ))).

• Line s + t = 0. Then, Q(λ) = (λ,−λ) and H(λ) = P3(Q(λ)) = (−(1/186)λ3 +
1,−45/124, 0). We observe that for this particular H(λ) all steps specialize prop-
erly with the exception of the roots of 63λ3 + 434 = 0 and λ = 0. The compu-
tations show that m1 = 6 for λ 6= 0 and m1 = 0 for λ = 0. Thus, Method 6
outputs

mult((λ : −λ : 1)) =

{
1 if λ 6= 0
3 if λ = 0.

We observe that gH(0) 6= 1. So, S3 is a cone with vertex H(0) = (1,−45/124, 0).

• Line s+ ((1/2)
√
−3− 1/2)t = 0. Then, Q(λ) = (−(1

2

√
−3− 1

2
)λ, λ) and H(λ) =

P3(Q(λ)); we observe that H(λ) is not defined for the roots of 3λ3−124 ı
√

3 = 0.
For H(λ) all steps specialize properly with the exception of λ = 0, for the roots
of −126 ı

√
3λ3−588λ3 +868 ı

√
3 = 0, and for the roots of 267λ3−2531 ı

√
3 = 0.

The computations show that m1 = 0 for λ = 0 and m1 = 6 for all 3λ3−124 ı
√

3 6=
0 with λ 6= 0. Thus, Method 6 outputs that

mult((−(
1

2

√
−3− 1

2
)λ : λ : 1)) =

{
1 if λ 6= 0 and 3λ3 − 124 ı

√
3 6= 0

3 if λ = 0.

Observe that, for λ = 0, we get again the vertex of S3.

• Line s− ((1/2)
√
−3 + 1/2)t = 0. Reasoning as above we get

mult(((
1

2

√
−3 +

1

2
)λ : λ : 1)) =

{
1 if λ 6= 0 and 3λ3 + 124 ı

√
3 6= 0

3 if λ = 0.

Observe that, for λ = 0, we get again the vertex of S3.

So, we have computed the multiplicity for affine parameter values in ∆4 \ ∆3.
[Execution of Method 8 ends, and hence Step 5 of the algorithm]

In Step 6, since (∆4 ∩ ∆3) \ ∆2 6= ∅ we go to Step 6.2 where we compute the
multiplicity, by using P2(s, t), of the finitely many affine parameter values that we
have not analyze yet. We get

mult((−(
1

2

√
−3− 1

2
)λ : λ : 1)) = 1 if 3λ3 − 124 ı

√
3 = 0,
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mult(((
1

2

√
−3 +

1

2
)λ : λ : 1)) = 1 if 3λ3 + 124 ı

√
3 = 0.

Now, since ∆4 ∩∆3 ∩∆2 = ∅ go skip Step 7 and we go to Step 8. So, we have finished
the analysis of the affine points, and we start with the study of the points at infinity.
In Step 8 of the main algorithm, we observe that p4(0, 1, 0) 6= 0. Thus, we compute
mult(P t

4(0, 0),S4) by applying Method 6. One gets that m1 := deg(Φ2,3(P t
4(0, 0))) = 6.

So,
mult((0 : 1 : 0)) = mult(P t

4(0, 0),S4) = 1.

In Step 9, we observe that p4(1, λ, 0) = 1+λ3. Moreover, we get that E∗ = ∅, and E∗∗ =
{(1, λ) | 1+λ3 = 0}. Thus, in Step 10, we analyze (1 : −1 : 0) and (1 : 1/2(1± ı

√
3) : 0).

Using Ps
1(s, t) we get that all are simple points. In Step 11, we apply Method 8 with

input: S4,Ps
4(s, t), A0 = (1, 1, 1), n1 = 9, n2 = 3, and Γ = {(1, λ) | 1 + λ3 6= 0}. We get

mult((1 : λ : 0)) = mult(Ps
4(λ, 0),S4) = 1.

Note that all points at infinity are simple. Summarizing P2(C) is decomposed as
P2(C) = ∪3

k=1Sk, where

1. S2 = {(1
2
(−1±

√
3 ı )t : t : 1) | t 6= 0},

2. S3 = {(0 : 0 : 1)},

3. S1 = P2(C) \ (S2 ∪S3).
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