32 research outputs found

    Eye movements during reading of randomly shuffled text

    Get PDF
    AbstractIn research on eye-movement control during reading, the importance of cognitive processes related to language comprehension relative to visuomotor aspects of saccade generation is the topic of an ongoing debate. Here we investigate various eye-movement measures during reading of randomly shuffled meaningless text as compared to normal meaningful text. To ensure processing of the material, readers were occasionally probed for words occurring in normal or shuffled text. For reading of shuffled text we observed longer fixation times, less word skippings, and more refixations than in normal reading. Shuffled-text reading further differed from normal reading in that low-frequency words were not overall fixated longer than high-frequency words. However, the frequency effect was present on long words, but was reversed for short words. Also, consistent with our prior research we found distinct experimental effects of spatially distributed processing over several words at a time, indicating how lexical word processing affected eye movements. Based on analyses of statistical linear mixed-effect models we argue that the results are compatible with the hypothesis that the perceptual span is more strongly modulated by foveal load in the shuffled reading task than in normal reading. Results are discussed in the context of computational models of reading

    Advances in structure elucidation of small molecules using mass spectrometry

    Get PDF
    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules

    Northumberland Name Books

    No full text

    Strategies that Facilitate Biology Students’ Understanding of Primary Literature

    No full text
    Reading the primary literature leads to many learning gains in biology undergraduates. But why can some students understand research articles more easily than others? We hypothesize that using a variety of metacognitive strategies while reading an article will increase student understanding. Think-aloud interviews of students reading an article were transcribed then coded using a taxonomy for metacognitive activities in text studying. Results suggest: 1) using more metacognitive strategies leads to greater understanding of the text, and 2) tools that aid in student understanding involve organizing thoughts and concepts in ways that go beyond restating the information found in the article

    Multipotent stromal cells/mesenchymal stem cells and fibroblasts combine to minimize skin hypertrophic scarring

    No full text
    Abstract Background Transplantation of mesenchymal stem cells (MSC) has been proposed to improve wound healing. However, as these cells only transiently survive in the implantation site, the mechanisms underlying this beneficial healing response are associated with restorative paracrine effects of MSC matricellular factors on resident stromal cells. However, this requires that the recipient has a robust reservoir of viable cells. Here, we examine the influence of MSCs on the behavior of cotransplanted fibroblasts, in a manner to provide augmented cellular reserve to debilitated individuals, specifically focusing on matrix remodeling following in-vivo wounding. Methods Using a Hylan-A dermal filler hydrogel containing collagen I and tenascin-C for delivery and increased survival of transplanted cells, we find that cotransplantation of MSCs with fibroblasts reduces scarring. Results Transplanted xenogeneic MSCs augmented fibroblast proliferation, migration, and extracellular matrix deposition critical for wound closure, and reduced inflammation following wounding. MSCs also corrected matrix remodeling by CXCR3-deficient fibroblasts which otherwise led to hypertrophic scarring. This effect was superior to MSC or fibroblast transplantation alone. Conclusions Taken together, these data suggest that MSCs, even if eventually rejected, transplanted with fibroblasts normalize matrix regeneration during healing. The current study provides insight into cellular therapies as a viable method for antifibrotic treatment and demonstrates that even transiently engrafted cells can have a long-term impact via matrix modulation and education of other tissue cells

    The Graduated Recovery Intervention Program for First Episode Psychosis: Treatment Development and Preliminary Data

    No full text
    Abstract The Graduated Recovery Intervention Program (GRIP) is a novel cognitive-behavioral therapy program designed to facilitate functional recovery in people who have experienced an initial episode of psychosis. In this paper, the treatment development process of GRIP is described and data from an open feasibility trial are presented. Findings suggest clinical and psychosocial benefits associated with GRIP, and the treatment was well-received by clients and therapists. The retention rate of 67%, however, suggests the need for protocol modifications to improve engagement. Initial data on the efficacy of GRIP are encouraging, although the study design precludes more robust conclusions at this time
    corecore