188 research outputs found

    Development and Preliminary Tests of an Open-Path Airborne Diode Laser Absorption Instrument for Carbon Dioxide

    Get PDF
    Carbon dioxide (CO2) is well known for its importance as an atmospheric greenhouse gas, with many sources and sinks around the globe. Understanding the fluxes of carbon into and out of the atmosphere is a complex and daunting challenge. One tool applied by scientists to measure the vertical flux of CO2 near the surface uses the eddy covariance technique, most often from towers but also from aircraft flying specific patterns over the study area. In this technique, variations of constituents of interest are correlated with fluctuations in the local vertical wind velocity. Measurement requirements are stringent, particularly with regard to precision, sensitivity to small changes, and temporal sampling rate. In addition, many aircraft have limited payload capability, so instrument size, weight, and power consumption are also important considerations. We report on the development and preliminary application of an airborne sensor for the measurement of atmospheric CO2. The instrument, modeled on the successful DLH (Diode Laser Hygrometer) series of instruments, has been tested in the laboratory and on the NASA DC-8 aircraft. Performance parameters such as accuracy, precision, sensitivity, specificity, and temporal response are discussed in the context of typical atmospheric variability and suitability for flux measurement applications. On-aircraft, in-flight data have been obtained and are discussed as well. Performance of the instrument has been promising, and continued flight testing is planned during 2016

    Validation of Regional CO2 Concentrations in the ECMWF Real-Time Analysis and Carbon-Tracker Reanalysis with Airborne Observations from ACT-A Field Campaign

    Get PDF
    Through verifying against hundreds of hours of airborne in-situ measurements from the NASA-sponsored Atmospheric Carbon and Transport America (ACT-A) field campaign, this study systematically examines the regional uncertainties and biases of the carbon dioxide (CO2) concentrations from two of the state-of-the-art global analysis products, namely the real-time analysis from the European Center (EC) for Medium Range Forecasting and NOAAs near real-time Carbon Tracker (CT) reanalysis. It is found that both the EC and CT-NRT analyses agree reasonably well with the independent ACT-A flight-level CO2 measurements in the free troposphere but the uncertainties are considerably larger in the boundary layer during both the summer months of 2016 and the winter months of 2017. There are also strong variabilities in accuracy and bias between seasons, and across three different subregions in the United States (Mid-Atlantic, Midwest and South). Overall, the analysis uncertainties of the EC and CT-NRT analyses in terms of root-mean square deviations against airborne data are comparable to each other, both of which are between 1-2 ppm in the free troposphere but can be as large as 10 ppm near the surface, which are grossly consistent with the difference between the two analyses. The current study not only provides systematic uncertainty estimates for both analysis products over North America but also demonstrated that these two independent estimates can be used to approximate the overall regional CO2 analysis uncertainties. Both statistics are important in future studies in quantifying the uncertainties of regional carbon concentration and flux estimates, as well as in assessing the impact of regional transport through more refined regional modeling and analysis systems

    Anthropogenic Control over Wintertime Oxidation of Atmospheric Pollutants

    Get PDF
    Anthropogenic air pollutants such as nitrogen oxides (NO(x) = NO + NO(2)), sulfur dioxide (SO(2)), and volatile organic compounds (VOC), among others, are emitted to the atmosphere throughout the year from energy production and use, transportation, and agriculture. These primary pollutants lead to the formation of secondary pollutants such as fine particulate matter (PM(2.5)) and ozone (O(3)) and perturbations to the abundance and lifetimes of short-lived greenhouse gases. Free radical oxidation reactions driven by solar radiation govern the atmospheric lifetimes and transformations of most primary pollutants and thus their spatial distributions. During winter in the mid and high latitudes, where a large fraction of atmospheric pollutants are emitted globally, such photochemical oxidation is significantly slower. Using observations from a highly instrumented aircraft, we show that multi-phase reactions between gas-phase NO(x) reservoirs and aerosol particles, as well as VOC emissions from anthropogenic activities, lead to a suite of atypical radical precursors dominating the oxidizing capacity in polluted winter air, and thus, the distribution and fate of primary pollutants on a regional to global scale

    The distribution of sea-salt aerosol in the global troposphere

    Get PDF
    We present the first data on the concentration of sea-salt aerosol throughout most of the depth of the troposphere and over a wide range of latitudes, which were obtained during the Atmospheric Tomography (ATom) mission. Sea-salt concentrations in the upper troposphere are very small, usually less than 10 ng per standard m3 (about 10 parts per trillion by mass) and often less than 1 ng m−3. This puts stringent limits on the contribution of sea-salt aerosol to halogen and nitric acid chemistry in the upper troposphere. Within broad regions the concentration of sea-salt aerosol is roughly proportional to water vapor, supporting a dominant role for wet scavenging in removing sea-salt aerosol from the atmosphere. Concentrations of sea-salt aerosol in the winter upper troposphere are not as low as in the summer and the tropics. This is mostly a consequence of less wet scavenging in the drier, colder winter atmosphere. There is also a source of sea-salt aerosol over pack ice that is distinct from that over open water. With a well-studied and widely distributed source, sea-salt aerosol provides an excellent test of wet scavenging and vertical transport of aerosols in chemical transport models

    Advances in the Projective Dynamics Method: A Procedure of Discretizing the Space applied to Markovian Processes

    Get PDF
    AbstractThe projection of a continuous space process to a discrete space process via the transition rates between neighboring bins allows us to relate a master equation to a solution of a stochastic differential equation. The presented method is formulated in its general form for the first time and tested with the Brownian Diffusion process of noninteracting particles with white noise in simple one-dimensional potentials. The comparison of the first passage time obtained with Projective Dynamics, Brownian motion simulations and analytical solutions show the accuracy of this method as well as a wide independence of the particular choice of the binning process
    • …
    corecore