89 research outputs found

    Nanovolume optimization of protein crystal growth using the microcapillary protein crystallization system

    Get PDF
    The Microcapillary Protein Crystallization System (MPCS) is used to successfully optimize protein crystals from 28 out of 29 tested proteins. Six protein structures have been determined from diffraction-ready crystals grown inside and harvested directly from the MPCS CrystalCards, which are compatible with the recently commercialized and automated MPCS Plug Maker instrument

    Mycobacterium tuberculosis Lipolytic Enzymes as Potential Biomarkers for the Diagnosis of Active Tuberculosis

    Get PDF
    BACKGROUND: New diagnosis tests are urgently needed to address the global tuberculosis (TB) burden and to improve control programs especially in resource-limited settings. An effective in vitro diagnostic of TB based on serological methods would be regarded as an attractive progress because immunoassays are simple, rapid, inexpensive, and may offer the possibility to detect cases missed by standard sputum smear microscopy. However, currently available serology tests for TB are highly variable in sensitivity and specificity. Lipolytic enzymes have recently emerged as key factors in lipid metabolization during dormancy and/or exit of the non-replicating growth phase, a prerequisite step of TB reactivation. The focus of this study was to analyze and compare the potential of four Mycobacterium tuberculosis lipolytic enzymes (LipY, Rv0183, Rv1984c and Rv3452) as new markers in the serodiagnosis of active TB. METHODS: Recombinant proteins were produced and used in optimized ELISA aimed to detect IgG and IgM serum antibodies against the four lipolytic enzymes. The capacity of the assays to identify infection was evaluated in patients with either active TB or latent TB and compared with two distinct control groups consisting of BCG-vaccinated blood donors and hospitalized non-TB individuals. RESULTS: A robust humoral response was detected in patients with active TB whereas antibodies against lipolytic enzymes were infrequently detected in either uninfected groups or in subjects with latent infection. High specifity levels, ranging from 93.9% to 97.5%, were obtained for all four antigens with sensitivity values ranging from 73.4% to 90.5%, with Rv3452 displaying the highest performances. Patients with active TB usually exhibited strong IgG responses but poor IgM responses. CONCLUSION: These results clearly indicate that the lipolytic enzymes tested are strongly immunogenic allowing to distinguish active from latent TB infections. They appear as potent biomarkers providing high sensitivity and specificity levels for the immunodiagnosis of active TB

    Sodium lauryl ether sulfate (SLES) degradation by nitrate-reducing bacteria

    Get PDF
    The online version of this article (doi:10.1007/s00253-017-8212-x) contains supplementary material, which is available to authorized users.The surfactant sodium lauryl ether sulfate (SLES) is widely used in the composition of detergents and frequently ends up in wastewater treatment plants (WWTPs). While aerobic SLES degradation is well studied, little is known about the fate of this compound in anoxic environments, such as denitrification tanks of WWTPs, nor about the bacteria involved in the anoxic biodegradation. Here, we used SLES as sole carbon and energy source, at concentrations ranging from 50 to 1000 mg L1, to enrich and isolate nitrate-reducing bacteria from activated sludge of a WWTP with the anaerobic-anoxic-oxic (A2/O) concept. In the 50 mg L1 enrichment, Comamonas (50%), Pseudomonas (24%), and Alicycliphilus (12%) were present at higher relative abundance, while Pseudomonas (53%) became dominant in the 1000 mg L1 enrichment. Aeromonas hydrophila strain S7, Pseudomonas stutzeri strain S8, and Pseudomonas nitroreducens strain S11 were isolated from the enriched cultures. Under denitrifying conditions, strains S8 and S11 degraded 500 mg L1 SLES in less than 1 day, while strain S7 required more than 6 days. Strains S8 and S11 also showed a remarkable resistance to SLES, being able to grow and reduce nitrate with SLES concentrations up to 40 g L1. Strain S11 turned out to be the best anoxic SLES degrader, degrading up to 41% of 500 mg L1. The comparison between SLES anoxic and oxic degradation by strain S11 revealed differences in SLES cleavage, degradation, and sulfate accumulation; both ester and ether cleavage were probably employed in SLES anoxic degradation by strain S11.This research was supported by the Spanish Ministry of Education and Science (contract project CTQ2007-64324 and 447 CONSOLIDER-CSD 2007-00055). The Regional Government of Castilla y Leon (Ref. GR76) is also gratefully acknowledged. MRD is supported by the WIMEK graduate school (project BAdaptive capacity and functionality of multi-trophic aquatic ecosystems^). AJMS is supported by the Gravitation grant (project 024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Science Foundation (NWO). AJMS and AJC are supported by an European ResearchCouncil (ERC) Grant (Project 323009).Thisstudywassupported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. This study was alsosupportedbythePortugueseFoundationforScienceandTechnology (FCT) under the scope of the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462). Joana Alves from University of Minho (Portugal) is acknowledged for support with the molecular techniques.info:eu-repo/semantics/publishedVersio

    LCA of greywater management within a water circular economy restorative thinking framework

    Get PDF
    Greywater reuse is an attractive option for the sustainable management of water under water scarcity circumstances, within a water circular economy restorative thinking framework. Its successful deployment relies on the availability of low cost and environmentally friendly technologies. The life cycle assessment (LCA) approach provides the appropriate methodological tool for the evaluation of alternative treatments based on environmental decision criteria and, therefore, it is highly useful during the process conceptual design. This methodology should be employed in the early design phase to select those technologies with lower environmental impact. This work reports the comparative LCA of three scenarios for greywater reuse: photocatalysis, photovoltaic solar-driven photocatalysis and membrane biological reactor, in order to help the selection of the most environmentally friendly technology. The study has been focused on the removal of the surfactant sodium dodecylbenzenesulfonate, which is used in the formulation of detergents and personal care products and, thus, widely present in greywater. LCA was applied using the Environmental Sustainability Assessment methodology to obtain two main environmental indicators in order to simplify the decision making process: natural resources and environmental burdens. Energy consumption is the main contributor to both indicators owing to the high energy consumption of the light source for the photocatalytic greywater treatment. In order to reduce its environmental burdens, the most desirable scenario would be the use of solar light for the photocatalytic transformation. However, while the technological challenge of direct use of solar light is approached, the environmental suitability of the photovoltaic solar energy driven photocatalysis technology to greywater reuse has been demonstrated, as it involves the smallest environmental impact among the three studied alternatives.Financial support from the Spanish Ministry of Economy and Competitiveness and from FEDER funds for projects CTM2013-43539-R, CTM2015-69845-R and CTQ2015-66078-R(MINECO/FEDER, UE) is gratefully acknowledged. Sara Dominguez and Jara Laso would also like to express their gratitude for the FPI postgraduate research grants (BES-2013-064055 and BES-2014-069368)

    Executable Modeling with fUML and Alf in papyrus: Tooling and experiments

    No full text
    Conference of 1st International Workshop on Executable Modeling, EXE 2015 ; Conference Date: 27 September 2015; Conference Code:119946International audiencefUML and Alf are two OMG standards dealing with executable modeling in UML. fUML focuses on semantic aspects, while Alf focuses on syntax. Papyrus (the UML/SysML modeler of the Eclipse foundation) provides tool support for these two standards. The purpose of this article is to provide the community with feedback and lessons learned by the Papyrus team regarding their implementation and usage of these standards, with the perspective of domain-specific uses of the tool. The feedback related to fUML is intended to highlight how tool developers can leverage fUML semantics to develop user and/or domain-specific model execution environments. The feedback related to Alf focuses on key end-user functionality: the combined usage of Alf and UML, with or without profiles

    Effet de la tempĂ©rature de fabrication sur les propriĂ©tĂ©s structurales et morphologiques des couches Ă©paisses de In2_2S3_3 “spray"

    No full text
    We have investigated the substrate temperature effect on structural and morphological properties of thick layers deposited on glass substrate by spray method. X-ray diffraction has shown that the In2_2S3_3 is the main phase present in these films and that the structure and the allotropic form of this phase are affected by the substrate temperature. Analysis of these layers by Scanning Electronic Microscopy (SEM) and by Atomic Force Microscopy (AFM) revealed that a best crystallinity and homogeneity are approximately obtained for Ts=613T_{\rm s} = 613 K.Nous avons Ă©tudiĂ© l'effet de la tempĂ©rature du substrat sur les propriĂ©tĂ©s structurales et morphologiques de couches de In2_2S3_3 dĂ©posĂ©es sur des lames de verre par la mĂ©thode de spray. La diffraction des rayons X a montrĂ© que L'In2_2S3_3 est la phase principale prĂ©sente dans ces films et que la structure et la forme allotropique de cette phase sont affectĂ©es par la tempĂ©rature du substrat. L'analyse de ces couches par Microscopie Électronique Ă  Balayage (MEB) et par Microscopie Ă  Force Atomique (MFA) a montrĂ© qu'une meilleure cristallinitĂ© et une meilleure homogĂ©nĂ©itĂ© sont obtenues pour des tempĂ©ratures du substrat voisines de 613 K

    Software variability composition and abstraction in robot control systems

    No full text
    Control systems for autonomous robots are concurrent, distributed, embedded, real-time and data intensive software systems. A real-world robot control system is composed of tens of software components. For each component providing robotic functionality, tens of different implementations may be available. The difficult challenge in robotic system engineering consists in selecting a coherent set of components, which provide the functionality required by the application requirements, taking into account their mutual dependencies. This challenge is exacerbated by the fact that robotics system integrators and application developers are usually not specifically trained in software engineering. Current approaches to variability management in complex software systems consists in explicitly modeling variation points and variants in software architectures in terms of Feature Models. The main contribution of this paper is the definition of a set of models and modeling tools that allow the hierarchical composition of Feature Models, which use specialized vocabularies for robotic experts with different skills and expertise
    • 

    corecore