30 research outputs found

    Maternal immunity enhances systemic recall immune responses upon oral immunization of piglets with F4 fimbriae

    Get PDF
    F4 enterotoxigenic Escherichia coli (ETEC) cause diarrhoea and mortality in piglets leading to severe economic losses. Oral immunization of piglets with F4 fimbriae induces a protective intestinal immune response evidenced by an F4-specific serum and intestinal IgA response. However, successful oral immunization of pigs with F4 fimbriae in the presence of maternal immunity has not been demonstrated yet. In the present study we aimed to evaluate the effect of maternal immunity on the induction of a systemic immune response upon oral immunization of piglets. Whereas F4-specific IgG and IgA could be induced by oral immunization of pigs without maternal antibodies and by intramuscular immunization of pigs with maternal antibodies, no such response was seen in the orally immunized animals with maternal antibodies. Since maternal antibodies can mask an antibody response, we also looked by ELIspot assays for circulating F4-specific antibody secreting cells (ASCs). Enumerating the F4-specific ASCs within the circulating peripheral blood mononuclear cells, and the number of F4-specific IgA ASCs within the circulating IgA+ B-cells revealed an F4-specific immune response in the orally immunized animals with maternal antibodies. Interestingly, results suggest a more robust IgA booster response by oral immunization of pigs with than without maternal antibodies. These results demonstrate that oral immunization of piglets with F4-specific maternal antibodies is feasible and that these maternal antibodies seem to enhance the secondary systemic immune response. Furthermore, our ELIspot assay on enriched IgA+ B-cells could be used as a screening procedure to optimize mucosal immunization protocols in pigs with maternal immunity

    X-Linked thrombocytopenia causing mutations in WASP (L46P and A47D) impair T cell chemotaxis

    Get PDF
    BACKGROUND: Mutation in the Wiskott-Aldrich syndrome Protein (WASP) causes Wiskott-Aldrich syndrome (WAS), X-linked thrombocytopenia (XLT) and X-linked congenital neutropenia (XLN). The majority of missense mutations causing WAS and XLT are found in the WH1 (WASP Homology) domain of WASP, known to mediate interaction with WIP (WASP Interacting Protein) and CIB1 (Calcium and Integrin Binding). RESULTS: We analyzed two WASP missense mutants (L46P and A47D) causing XLT for their effects on T cell chemotaxis. Both mutants, WASP(R)(L46P) and WASP(R)(A47D) (S1-WASP shRNA resistant) expressed well in Jurkat(WASP-KD) T cells (WASP knockdown), however expression of these two mutants did not rescue the chemotaxis defect of Jurkat(WASP-KD) T cells towards SDF-1α. In addition Jurkat(WASP-KD) T cells expressing these two WASP mutants were found to be defective in T cell polarization when stimulated with SDF-1α. WASP exists in a closed conformation in the presence of WIP, however both the mutants (WASP(R)(L46P) and WASP(R)(A47D)) were found to be in an open conformation as determined in the bi-molecular complementation assay. WASP protein undergoes proteolysis upon phosphorylation and this turnover of WASP is critical for T cell migration. Both the WASP mutants were found to be stable and have reduced tyrosine phosphorylation after stimulation with SDF-1α. CONCLUSION: Thus our data suggest that missense mutations WASP(R)(L46P) or WASP(R)(A47D) affect the activity of WASP in T cell chemotaxis probably by affecting the turnover of the protein. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12929-014-0091-1) contains supplementary material, which is available to authorized users

    Relevance of laboratory testing for the diagnosis of primary immunodeficiencies: a review of case-based examples of selected immunodeficiencies

    Get PDF
    The field of primary immunodeficiencies (PIDs) is one of several in the area of clinical immunology that has not been static, but rather has shown exponential growth due to enhanced physician, scientist and patient education and awareness, leading to identification of new diseases, new molecular diagnoses of existing clinical phenotypes, broadening of the spectrum of clinical and phenotypic presentations associated with a single or related gene defects, increased bioinformatics resources, and utilization of advanced diagnostic technology and methodology for disease diagnosis and management resulting in improved outcomes and survival. There are currently over 200 PIDs with at least 170 associated genetic defects identified, with several of these being reported in recent years. The enormous clinical and immunological heterogeneity in the PIDs makes diagnosis challenging, but there is no doubt that early and accurate diagnosis facilitates prompt intervention leading to decreased morbidity and mortality. Diagnosis of PIDs often requires correlation of data obtained from clinical and radiological findings with laboratory immunological analyses and genetic testing. The field of laboratory diagnostic immunology is also rapidly burgeoning, both in terms of novel technologies and applications, and knowledge of human immunology. Over the years, the classification of PIDs has been primarily based on the immunological defect(s) ("immunophenotype") with the relatively recent addition of genotype, though there are clinical classifications as well. There can be substantial overlap in terms of the broad immunophenotype and clinical features between PIDs, and therefore, it is relevant to refine, at a cellular and molecular level, unique immunological defects that allow for a specific and accurate diagnosis. The diagnostic testing armamentarium for PID includes flow cytometry - phenotyping and functional, cellular and molecular assays, protein analysis, and mutation identification by gene sequencing. The complexity and diversity of the laboratory diagnosis of PIDs necessitates many of the above-mentioned tests being performed in highly specialized reference laboratories. Despite these restrictions, there remains an urgent need for improved standardization and optimization of phenotypic and functional flow cytometry and protein-specific assays. A key component in the interpretation of immunological assays is the comparison of patient data to that obtained in a statistically-robust manner from age and gender-matched healthy donors. This review highlights a few of the laboratory assays available for the diagnostic work-up of broad categories of PIDs, based on immunophenotyping, followed by examples of disease-specific testing

    The XXL survey: first results and future

    Get PDF
    The XXL survey currently covers two 25 sq. deg. patches with XMM observations of ~10ks. We summarise the scientific results associated with the first release of the XXL data set, that occurred mid 2016. We review several arguments for increasing the survey depth to 40 ks during the next decade of XMM operations. X-ray (z1 cluster density. It will eventually constitute a reference study and an ideal calibration field for the upcoming eROSITA and Euclid missions

    VLPs and particle strategies for cancer vaccines

    Get PDF
    n/

    Interstitial lung disease in children - genetic background and associated phenotypes

    Get PDF
    Interstitial lung disease in children represents a group of rare chronic respiratory disorders. There is growing evidence that mutations in the surfactant protein C gene play a role in the pathogenesis of certain forms of pediatric interstitial lung disease. Recently, mutations in the ABCA3 transporter were found as an underlying cause of fatal respiratory failure in neonates without surfactant protein B deficiency. Especially in familiar cases or in children of consanguineous parents, genetic diagnosis provides an useful tool to identify the underlying etiology of interstitial lung disease. The aim of this review is to summarize and to describe in detail the clinical features of hereditary interstitial lung disease in children. The knowledge of gene variants and associated phenotypes is crucial to identify relevant patients in clinical practice

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research

    Open-face tunnelling effects on non-displacement piles in clay ii) Tunnelling beneath loaded piles and analytical modelling

    No full text
    Results from centrifuge modelling of tunnelling beneath loaded non-displacement piles in clay are presented in this paper; the principal variables were soil strength, pile loading and pile position relative to the tunnel. The details of the experimental set-up and the importance of understanding the loading history of the soil and the piles are presented in a companion paper. The subsurface pile–soil interaction was captured through particle image velocimetry; the effects of pile loading and pile position were found to have a significant impact on pile settlements. Analysis of tunnel–pile interaction through t–z load-transfer modelling of the pile–soil interface is presented using the approach described in the companion paper. The mechanisms observed in the centrifuge tests are predicted reasonably well. A significant improvement in the prediction of the induced pile loading and settlements was achieved with the inclusion of plasticity and simple power-law non-linearity for the soil
    corecore