14 research outputs found

    Intramolecular Phenotypic Capacitance in a Modular RNA Molecule

    Get PDF
    Phenotypic capacitance refers to the ability of a genome to accumulate mutations that are conditionally hidden and only reveal phenotype-altering effects after certain environmental or genetic changes. Capacitance has important implications for the evolution of novel forms and functions, but experimentally studied mechanisms behind capacitance are mostly limited to complex, multicomponent systems often involving several interacting protein molecules. Here we demonstrate phenotypic capacitance within a much simpler system, an individual RNA molecule with catalytic activity (ribozyme). This naturally occurring RNA molecule has a modular structure, where a scaffold module acts as an intramolecular chaperone that facilitates folding of a second catalytic module. Previous studies have shown that the scaffold module is not absolutely required for activity, but dramatically decreases the concentration of magnesium ions required for the formation of an active site. Here, we use an experimental perturbation of magnesium ion concentration that disrupts the folding of certain genetic variants of this ribozyme and use in vitro selection followed by deep sequencing to identify genotypes with altered phenotypes (catalytic activity). We identify multiple conditional mutations that alter the wild-type ribozyme phenotype under a stressful environmental condition of low magnesium ion concentration, but preserve the phenotype under more relaxed conditions. This conditional buffering is confined to the scaffold module, but controls the catalytic phenotype, demonstrating how modularity can enable phenotypic capacitance within a single macromolecule. RNA’s ancient role in life suggests that phenotypic capacitance may have influenced evolution since life’s origins

    Genotype Network Intersections Promote Evolutionary Innovation

    Get PDF
    Evolutionary innovations are qualitatively novel traits that emerge through evolution and increase biodiversity. The genetic mechanisms of innovation remain poorly understood. A systems view of innovation requires the analysis of genotype networks—the vast networks of genetic variants that produce the same phenotype. Innovations can occur at the intersection of two different genotype networks. However, the experimental characterization of genotype networks has been hindered by the vast number of genetic variants that need to be functionally analyzed. Here, we use high-throughput sequencing to study the fitness landscape at the intersection of the genotype networks of two catalytic RNA molecules (ribozymes). We determined the ability of numerous neighboring RNA sequences to catalyze two different chemical reactions, and we use these data as a proxy for a genotype to fitness map where two functions come in close proximity. We find extensive functional overlap, and numerous genotypes can catalyze both functions. We demonstrate through evolutionary simulations that these numerous points of intersection facilitate the discovery of a new function. However, the rate of adaptation of the new function depends upon the local ruggedness around the starting location in the genotype network. As a consequence, one direction of adaptation is more rapid than the other. We find that periods of neutral evolution increase rates of adaptation to the new function by allowing populations to spread out in their genotype network. Our study reveals the properties of a fitness landscape where genotype networks intersect and the consequences for evolutionary innovations. Our results suggest that historic innovations in natural systems may have been facilitated by overlapping genotype networks

    RNA Sequence to Structure Analysis from Comprehensive Pairwise Mutagenesis of Multiple Self-Cleaving Ribozymes

    Get PDF
    Self-cleaving ribozymes are RNA molecules that catalyze the cleavage of their own phosphodiester backbones. These ribozymes are found in all domains of life and are also a tool for biotechnical and synthetic biology applications. Self-cleaving ribozymes are also an important model of sequence-to-function relationships for RNA because their small size simplifies synthesis of genetic variants and self-cleaving activity is an accessible readout of the functional consequence of the mutation. Here, we used a high-throughput experimental approach to determine the relative activity for every possible single and double mutant of five self-cleaving ribozymes. From this data, we comprehensively identified non-additive effects between pairs of mutations (epistasis) for all five ribozymes. We analyzed how changes in activity and trends in epistasis map to the ribozyme structures. The variety of structures studied provided opportunities to observe several examples of common structural elements, and the data was collected under identical experimental conditions to enable direct comparison. Heatmap-based visualization of the data revealed patterns indicating structural features of the ribozymes including paired regions, unpaired loops, non-canonical structures, and tertiary structural contacts. The data also revealed signatures of functionally critical nucleotides involved in catalysis. The results demonstrate that the data sets provide structural information similar to chemical or enzymatic probing experiments, but with additional quantitative functional information. The large-scale data sets can be used for models predicting structure and function and for efforts to engineer self-cleaving ribozymes

    Forest and woodland replacement patterns following drought-related mortality

    Get PDF
    Forest vulnerability to drought is expected to increase under anthropogenic climate change, and drought-induced mortality and community dynamics following drought have major ecological and societal impacts. Here, we show that tree mortality concomitant with drought has led to short-term (mean 5 y, range 1 to 23 y after mortality) vegetation-type conversion in multiple biomes across the world (131 sites). Self-replacement of the dominant tree species was only prevalent in 21% of the examined cases and forests and woodlands shifted to nonwoody vegetation in 10% of them. The ultimate temporal persistence of such changes remains unknown but, given the key role of biological legacies in long-term ecological succession, this emerging picture of postdrought ecological trajectories highlights the potential for major ecosystem reorganization in the coming decades. Community changes were less pronounced under wetter postmortality conditions. Replacement was also influenced by management intensity, and postdrought shrub dominance was higher when pathogens acted as codrivers of tree mortality. Early change in community composition indicates that forests dominated by mesic species generally shifted toward more xeric communities, with replacing tree and shrub species exhibiting drier bioclimatic optima and distribution ranges. However, shifts toward more mesic communities also occurred and multiple pathways of forest replacement were observed for some species. Drought characteristics, species-specific environmental preferences, plant traits, and ecosystem legacies govern postdrought species turnover and subsequent ecological trajectories, with potential far-reaching implications for forest biodiversity and ecosystem services.Additional co-authors: Lucía Galiano, Joseph L. Ganey, Patrick Gonzalez, Anna L. Jacobsen, Jeffrey Michael Kane, Thomas Kitzberger, Juan C. Linares, Suzanne B. Marchetti, George Matusick, Michael Michaelian, Rafael M. Navarro-Cerrillo, Robert Brandon Pratt, Miranda D. Redmond, Andreas Rigling, Francesco Ripullone, Gabriel Sangüesa-Barreda, Yamila Sasal, Sandra Saura-Mas, Maria Laura Suarez, Thomas T. Veblen, Caroline Vincke, and Ben Zeema

    Forest and woodland replacement patterns following drought-related mortality

    Get PDF
    Forest vulnerability to drought is expected to increase under anthropogenic climate change, and drought-induced mortality and community dynamics following drought have major ecological and societal impacts. Here, we show that tree mortality concomitant with drought has led to short-term (mean 5 y, range 1 to 23 y after mortality) vegetation-type conversion in multiple biomes across the world (131 sites). Self-replacement of the dominant tree species was only prevalent in 21% of the examined cases and forests and woodlands shifted to nonwoody vegetation in 10% of them. The ultimate temporal persistence of such changes remains unknown but, given the key role of biological legacies in long-term ecological succession, this emerging picture of postdrought ecological trajectories highlights the potential for major ecosystem reorganization in the coming decades. Community changes were less pronounced under wetter postmortality conditions. Replacement was also influenced by management intensity, and postdrought shrub dominance was higher when pathogens acted as codrivers of tree mortality. Early change in community composition indicates that forests dominated by mesic species generally shifted toward more xeric communities, with replacing tree and shrub species exhibiting drier bioclimatic optima and distribution ranges. However, shifts toward more mesic communities also occurred and multiple pathways of forest replacement were observed for some species. Drought characteristics, species-specific environmental preferences, plant traits, and ecosystem legacies govern post drought species turnover and subsequent ecological trajectories, with potential far-reaching implications for forest biodiversity and ecosystem services.Peer reviewe

    Patterns of Genomic Instability in Interspecific Yeast Hybrids With Diverse Ancestries

    No full text
    The genomes of hybrids often show substantial deviations from the features of the parent genomes, including genomic instabilities characterized by chromosomal rearrangements, gains, and losses. This plastic genomic architecture generates phenotypic diversity, potentially giving hybrids access to new ecological niches. It is however unclear if there are any generalizable patterns and predictability in the type and prevalence of genomic variation and instability across hybrids with different genetic and ecological backgrounds. Here, we analyzed the genomic architecture of 204 interspecific Saccharomyces yeast hybrids isolated from natural, industrial fermentation, clinical, and laboratory environments. Synchronous mapping to all eight putative parental species showed significant variation in read depth indicating frequent aneuploidy, affecting 44% of all hybrid genomes and particularly smaller chromosomes. Early generation hybrids with largely equal genomic content from both parent species were more likely to contain aneuploidies than introgressed genomes with an older hybridization history, which presumably stabilized the genome. Shared k-mer analysis showed that the degree of genomic diversity and variability varied among hybrids with different parent species. Interestingly, more genetically distant crosses produced more similar hybrid genomes, which may be a result of stronger negative epistasis at larger genomic divergence, putting constraints on hybridization outcomes. Mitochondrial genomes were typically inherited from the species also contributing the majority nuclear genome, but there were clear exceptions to this rule. Together, we find reliable genomic predictors of instability in hybrids, but also report interesting cross- and environment-specific idiosyncrasies. Our results are an important step in understanding the factors shaping divergent hybrid genomes and their role in adaptive evolution

    Negative Epistasis in Experimental RNA Fitness Landscapes

    No full text
    Mutations and their effects on fitness are a fundamental component of evolution. The effects of some mutations change in the presence of other mutations, and this is referred to as epistasis. Epistasis can occur between mutations in different genes or within the same gene. A systematic study of epistasis requires the analysis of numerous mutations and their combinations, which has recently become feasible with advancements in DNA synthesis and sequencing. Here we review the mutational effects and epistatic interactions within RNA molecules revealed by several recent high-throughput mutational studies involving two ribozymes studied in vitro, as well as a tRNA and a snoRNA studied in yeast. The data allow an analysis of the distribution of fitness effects of individual mutations as well as combinations of two or more mutations. Two different approaches to measuring epistasis in the data both reveal a predominance of negative epistasis, such that higher combinations of two or more mutations are typically lower in fitness than expected from the effect of each individual mutation. These data are in contrast to past studies of epistasis that used computationally predicted secondary structures of RNA that revealed a predominance of positive epistasis. The RNA data reviewed here are more similar to that found from mutational experiments on individual protein enzymes, suggesting that a common thermodynamic framework may explain negative epistasis between mutations within macromolecules

    Intramolecular phenotypic capacitance in a modular RNA molecule

    No full text

    High-Throughput Mutational Analysis of Six Self-Cleaving Ribozymes

    No full text
    Ribozymes are RNA molecules that have the ability to form complex structures and perform catalytic biochemical functions. Using a recently developed high-throughput sequencing based biochemical assay to detect self-cleavage, we will conduct comprehensive a mutational analysis of six ribozymes (HDV, CPEB3, hatchet, hammerhead III, twister, hairpin). These ribozymes all exhibit 5’ self-cleavage and range from 45-78nt. DNA libraries have been designed to synthesize all of the single and double mutants for each ribozyme. Quality control has been conducted for the transcription, reverse transcription/template switching and the Illumina adapter PCR. Specifically, the proposed research will assess the biochemical function of all of the wildtype, single and double mutants for each of the ribozymes resulting in ~106,000 unique sequences. This data will then be analyzed using custom Python scripts that determine the effect of each mutation on the ribozyme cleavage activity. Using the data collected from the single and double mutants we will be able to infer the mutational interactions (pair-wise epistasis) exhibited in all six ribozymes. This data will be used toward the development of models that predict fitness effects needed for evolutionary forecasting

    The Dynamics of Adaptation to Stress from Standing Genetic Variation and de novo Mutations

    No full text
    Adaptation from standing genetic variation is an important process underlying evolution in natural populations, but we rarely get the opportunity to observe the dynamics of fitness and genomic changes in real time. Here, we used experimental evolution and Pool-Seq to track the phenotypic and genomic changes of genetically diverse asexual populations of the yeast Saccharomyces cerevisiae in four environments with different fitness costs. We found that populations rapidly and in parallel increased in fitness in stressful environments. In contrast, allele frequencies showed a range of trajectories, with some populations fixing all their ancestral variation in <30 generations and others maintaining diversity across hundreds of generations. We detected parallelism at the genomic level (involving genes, pathways, and aneuploidies) within and between environments, with idiosyncratic changes recurring in the environments with higher stress. In particular, we observed a tendency of becoming haploid-like in one environment, whereas the populations of another environment showed low overall parallelism driven by standing genetic variation despite high selective pressure. This work highlights the interplay between standing genetic variation and the influx of de novo mutations in populations adapting to a range of selective pressures with different underlying trait architectures, advancing our understanding of the constraints and drivers of adaptation
    corecore