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Abstract

Evolutionary innovations are qualitatively novel traits that emerge through evolution and

increase biodiversity. The genetic mechanisms of innovation remain poorly understood. A

systems view of innovation requires the analysis of genotype networks—the vast networks

of genetic variants that produce the same phenotype. Innovations can occur at the intersec-

tion of two different genotype networks. However, the experimental characterization of

genotype networks has been hindered by the vast number of genetic variants that need to

be functionally analyzed. Here, we use high-throughput sequencing to study the fitness

landscape at the intersection of the genotype networks of two catalytic RNA molecules (ribo-

zymes). We determined the ability of numerous neighboring RNA sequences to catalyze

two different chemical reactions, and we use these data as a proxy for a genotype to fitness

map where two functions come in close proximity. We find extensive functional overlap, and

numerous genotypes can catalyze both functions. We demonstrate through evolutionary

simulations that these numerous points of intersection facilitate the discovery of a new func-

tion. However, the rate of adaptation of the new function depends upon the local ruggedness

around the starting location in the genotype network. As a consequence, one direction of

adaptation is more rapid than the other. We find that periods of neutral evolution increase

rates of adaptation to the new function by allowing populations to spread out in their geno-

type network. Our study reveals the properties of a fitness landscape where genotype net-

works intersect and the consequences for evolutionary innovations. Our results suggest

that historic innovations in natural systems may have been facilitated by overlapping geno-

type networks.

Introduction

The mechanisms by which evolution produces new functions have intrigued biologists since

the earliest formulations of evolutionary theory [1,2]. From one perspective, random genetic

changes and natural selection for an existing function could prevent novelty if this process

were to keep populations near genotypes at the peaks of fitness landscapes and preserve
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existing forms at the expense of novel mutants [3–6]. Models to explain the origins of new

functions often invoke gene duplication events, which create the redundancy needed to allow

either copy to eventually evolve toward a new function [7–10]. However, the fitness landscape

between old and new functions has been difficult to study largely because of the vast number

of possible genetic variants for any given gene. As a result, models of innovation differ in the

relative importance of neutral drift, environmental changes, the timing and type of selection

pressure, and the high-dimensional nature of sequence space [11]. Our understanding of inno-

vations will benefit from direct observations of the evolution of new structures and functions

[12–18].

Macromolecular phenotypes such as the activity of enzymes can tolerate changes to their

primary sequence (mutations) without necessarily changing structure or function. Many geno-

types (sequences) have the same phenotype (enzymatic activity) [19,20]. Natural populations

of both organisms and macromolecules that appear the same phenotypically still harbor many

genetic differences. Genotype networks are the collection of all genotypes with the same phe-

notype that are interconnected by mutational steps [21]. The expansiveness of genotype net-

works provides robustness because mutations are likely to preserve the existing phenotype.

However, it has also been argued that genotype networks can facilitate evolutionary innovation

because different regions of the vast genotype networks provide mutational access to new

structures and functions. Populations occupy finite regions of these vast networks, and it has

been suggested that innovations can occur when populations encounter regions of genotype

space where two different genotype networks are in close proximity [22] (Fig 1A). In recent

years, experimental advancements have enabled extensive mapping of genotype to phenotype.

However, with few exceptions, these mappings have been used to understand the fitness land-

scape of a single function. In order to evaluate the innovation potential of genotype networks,

it is necessary to characterize the number of mutations that separate two different genotype

networks and the fitness consequences of the mutational changes needed to move from one

network to the other.

Here, we report an experimentally constructed “ribozyme fitness” landscape at the intersec-

tion of two genotype networks. For our study system, we have chosen two distinct RNA phe-

notypes. The RNA molecules are ribozymes, structured noncoding RNA molecules that

catalyze chemical reactions. One ribozyme phenotype is the naturally occurring self-cleaving

Hepatitis Delta Virus (HDV) ribozyme. The second phenotype is the class III Ligase ribozyme

that was discovered through artificial selection in a lab [23,24]. The two ribozymes fold into

very different structures (Fig 1A) and catalyze different chemical reactions (Fig 1D). Despite

the differences between the two ribozymes, it was previously shown that the two genotype net-

works come in close proximity, and very few mutations could convert one ribozyme into the

other [24]. This provides an experimentally tractable example of a molecular innovation. To

characterize the effects of mutations required to move between the two genotype networks, we

developed two high-throughput-sequencing–based assays to quantify both ribozyme pheno-

types. Although the two prototype ribozyme sequences are separated by 67 mutations, we

identified two reference genotypes with approximately “wild-type” levels of activity that con-

tained 14 mutational differences between them. We synthesized DNA templates needed to

transcribe the RNA molecules that contain all the combinations of these mutational differ-

ences. We analyzed the 214 = 16,384 neighboring RNA sequence variants using both ribozyme

assays (S1 Fig). For each sequence, we determined the ribozyme fitness for both activities,

defined as the performance of the sequence in our assays relative to a reference sequence. For

the HDV phenotype, our ribozyme fitness is defined by the fraction of the sequence that self-

cleaves during transcription. For the Ligase phenotype, ribozyme fitness is defined as the
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Fig 1. The experimental fitness landscape at the intersection of two genotype networks. (A) Overlay of the HDV and Ligase genotype networks. Nodes represent

individual genotypes that are connected by an edge if they are different by a single nucleotide change. Nodes are colored based on their dominant activity (red = HDV;

blue = Ligase). For each genotype, “ribozyme fitness” is defined as the relative ribozyme activity determined by high-throughput sequencing and is indicated by the size of

the node and the color saturation. Genotypes with fitness below 0.07 are excluded for visualization purposes. Boxes on the left (HDV reference) and right (Ligase

reference) show the secondary structure for the reference genotypes and all the mutational changes that were analyzed. The mutations in blue boxes convert the HDV

reference to the Ligase reference. The mutations in red boxes convert the Ligase reference to the HDV reference. (B) Distance-based layout of the two fitness landscapes.

Each sequence is positioned on the x-axis according to its mutational distance from the HDV reference genotype. HDV fitness (red) and Ligase fitness (blue) are indicated

by the y-axis value. The number of genotypes (n) increases in the middle of the plot, and the total number of genotypes at each position is indicated about the graph. The

number of dual-function intersection sequences (i) at each mutational distance is also indicated. Inset text “peaks” and “ruggedness” describe quantitative characteristics of

Genotype network intersections promote evolutionary innovation
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change in abundance of each sequence from a single round of selection for Ligase activity (see

Materials and Methods).

We, like others, use performance in an in vitro assay as a proxy for fitness [25–28], and we

do not provide experimental confirmation that the ribozymes studied here alter the fitness of

any organism. We note that there are several examples of a simple correlation between enzyme

activity and organismal fitness [29,30], and our simulation based analysis that follows assumes

such. However, the relationship between the properties of gene products and organismal fit-

ness is typically complex, often environmentally dependent, and the subject of numerous lines

of investigation [31,32]. Because of the vastness of sequence space, the ability to predict evolu-

tionary outcomes in the lab and in natural environments will require advancements in high-

throughput in vivo and in vitro assays, as well as in computational approaches to merge data

across scales. In this spirit, we used our in vitro determined ribozyme fitness values to analyze

the billions of mutational trajectories between the two genotype networks and use computa-

tional simulations to explore how these proximal genotype networks might impact evolution-

ary innovations.

Results

Empirical ribozyme fitness landscape at the intersection of two genotype

networks

We obtained ribozyme fitness measurements for all 16,384 RNA sequences for both RNA phe-

notypes. For visualization of the resulting genotype networks, we plot the data as a network

graph, in which each node is a unique sequence, nodes are connected if they differ by a single

mutation, and the fitness is represented by the size and color saturation of the node (Fig 1).

Each node is colored based on the dominant activity, with HDV in red and Ligase in blue. Fit-

ness values were normalized such that fitness = 1 for the reference ribozyme, previously

referred to as the “prototype” [24]. This representation of the data allows a visual appraisal of

the proximity of the two genotype networks. In general, both networks are characterized by a

decrease in fitness with distance from the reference. The region where the two networks are in

closest proximity contains sequences with low activity for both functions. Still, we find that

numerous genotypes in the two networks are proximal, creating numerous mutational trajec-

tories between the two functions. Characterizing the mutational distance between the two net-

works requires numerous distance measurements.

Proximity and functional overlap of the two genotype networks

To quantify the average distance between the two genotype networks, we measured the muta-

tional distance between every genotype on one network and the nearest genotype on the other

network with equivalent or greater fitness (Fig 2A). We found that this distance depends upon

whether or not a lower bound is set for genotypes to be considered a member of the genotype

network. We found that the average distance between the networks decreased as the fitness

cutoff is lowered (Fig 2A). For example, if “wild-type” activity is required (fitness > 1), the two

networks are separated by approximately 7 mutations on average (S2 Fig). However, if mole-

cules with 10% of wild-type activity or better are considered part of the network, then most

genotypes are only 1–2 mutations from the other network. We found that the number of

the landscapes. Data and Python scripts used to construct fitness landscapes can be found on GitLab. (C) Distributions of the magnitude of epistatic values found in each

landscape. Data and Python scripts used to calculate and graph epistasis can be found on GitLab. (D) Representation of the chemical reactions catalyzed by each ribozyme.

HDV, Hepatitis Delta Virus.

https://doi.org/10.1371/journal.pbio.3000300.g001
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connections between the two networks was also dependent upon the fitness cutoff. Specifically,

decreasing the fitness cutoff increased the connectivity between the networks (S3 Fig).

Interestingly, when no minimal fitness cutoff is imposed, we find that numerous genotypes

appear to catalyze both reactions, each representing a point of intersection between the two

genotype networks (Fig 2B). We expected to find some dual-function intersection sequences

because we intentionally designed our library around the sequence space of a previously dis-

covered dual-function sequence. With a maximum of 14 mutations between all the sequences,

it was not surprising that most sequences maintained one of the functions. However, the num-

ber of potential dual-function sequences in our data was surprising. Admittedly, the precise

number of these dual-function intersection sequences is difficult to determine because many

sequences show very low activity for one of the functions that is near the limits of our detection

at the sequencing depth achieved. We therefore set a cutoff that each specific sequence must be

detected as active at least 3 times in our data, once in each replicate. Based on the high quality

of our sequence data (S4B Fig), we predict that it is very unlikely that sequencing errors from

mutational neighbors could produce a false positive with this cutoff because it would require a

precise sequence error 3 separate times. Based on this cutoff, we find that over half the geno-

types (9,032) can perform both functions (Fig 2B). Specifically, we detected HDV activity for

9,032 of the genotypes and Ligase activity for 16,384 genotypes.

We took several steps to confirm that low-fitness genotypes were in fact active ribozymes.

First, we carried out in vitro assays of self-cleavage and ligation activity for several genotypes.

We determined self-cleavage activity by gel electrophoresis and Ligase activity by quantitative

PCR (see Materials and Methods). Both assays supported our sequence-based fitness measure-

ments (S5 Fig). However, these in vitro methods are less accurate for low-fitness sequences,

which required further investigation. Therefore, we also compared the read counts of the low-

est-fitness sequences to counts of spurious sequences that were not intentionally synthesized

in our library. These spurious genotypes had mutations outside the 14 variable nucleotide

positions. The least frequent HDV genotypes in our data that showed self-cleavage activity

were observed as cleaved more than once in all 3 replicates and uncleaved more than 108 times

(S6 Fig). In contrast, spurious reads were typically only observed once, either as cleaved or

uncleaved (S7 Fig). We note that genotypes that were not detected as cleaved in any individual

replicate were not considered active. The lowest-fitness Ligase genotype was observed as

ligated more than 4 separate times in a given replicate and more than 32 times across all 3 rep-

licates, again in contrast to the rarity of spurious reads. Further, for all sequences, we also esti-

mated enzymatic ligation rates from our fitness measurements and compared these rates to

reported nonenzymatic ligation rates. To accomplish this, we identified a genotype that was in

the original intersection sequence study [24] and in our current data and assumed that this

ribozyme had the same enzymatic rate in both studies. We then converted our fitness values to

rates using a linear transformation. This estimated ligation rate indicated that all of the Ligase

Fig 2. Proximity and overlap of the two genotype networks. (A) Distributions of shortest mutational distance

(x-axis) between genotypes on different networks as a function of fitness cutoff (y-axis; blue = Ligase to HDV

distances; red = HDV to Ligase distances). For each genotype with a fitness above the cutoff value for one function, the

distance to the nearest genotype with the other function was determined. The distribution of these distances

determined for all genotypes are plotted as violin plots. The diagram (above, left) illustrates the measurement of

distance between the two functions. Inset (above, right) shows the distribution at fitness cutoff = 1.3 as histograms, and

dashed lines indicate the sample means. Data and Python scripts used to plot distributions can be found on Gitlab. (B)

Intersection sequences with detectable activity for both functions. For each genotype, the HDV fitness is plotted on the

x-axis, and Ligase fitness is plotted on the y-axis. Color indicates the ratio of Ligation fitness (blue) to HDV fitness

(red). The size of the node is scaled to the higher of the two fitness values. Fitness values are log10 transformed. Dashed

lines indicate wild-type level activity with fitness = 1 (log10 fitness = 0). Data and Python scripts used to plot

intersection sequences can be found on Gitlab. HDV, Hepatitis Delta Virus.

https://doi.org/10.1371/journal.pbio.3000300.g002
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measurements in our study were above the template-directed, nonenzymatic oligonucleotide

ligation rate (S8C Fig). Finally, a positive correlation between frequency and fitness would be

expected if our selection for ligation activity allowed random sequences to pass through with-

out actually catalyzing a ligation (often termed a “leaky” selection). However, we found no cor-

relation (S8 Fig).

Most of the identified dual-function intersection sequences have very low fitness for both

functions, and not surprisingly, no single sequence had higher than wild-type fitness for both

functions (log10(fitness) > 0). However, several sequences did show detectable levels of activity

for one function and higher than wild-type fitness for the other function. Under many evolu-

tionary scenarios, these genotypes could be the most likely to facilitate a molecular innovation

because they could persist in a population if selection was acting on only one function yet

would already provide the new function as a suboptimal promiscuous function [33,34].

Computational simulations of evolutionary innovation on the empirical

fitness landscape

Next, we set out to evaluate the implications of these genotype networks for the evolution of

molecular innovations. The networks are high-dimensional, which limits any intuitive inter-

pretation. We therefore turned to computational simulations of populations of RNA molecules

evolving on the networks. We modeled evolution using a Wright–Fisher model [35] with a

fixed population size, a fixed mutation rate, and a probability of survival determined by the

experimental relative ribozyme fitness values for each genotype (see Materials and Methods).

For these simulations, it is useful to visualize the genotype networks as a landscape where the

height of the landscape is determined by the fitness (Fig 3A and S1 Movie). In our simulations,

evolving populations will tend to move uphill toward peaks, defined as sequences where all

1-mutation neighbors have lower fitness. The crossing of fitness valleys to get from low-fitness

peaks to higher-fitness peaks is allowed in our simulations but requires a stochastic series of

less likely events. We applied this evolutionary simulation to three scenarios of evolutionary

innovation: 1) immediate selection for the new function following gene duplication, 2) neutral

evolution prior to selection for the new function, and 3) simultaneous selection for both func-

tions. This last scenario represented evolutionary innovation prior to gene duplication.

Immediate selection for the new function following gene duplication

The first scenario modeled evolution following a gene duplication event, in which a new copy

of a gene was under selection for a new function and the other copy simply maintained the

original function. We therefore only followed the evolution of the new function for this sce-

nario. We applied immediate selection pressure for the new function, with no consequence for

the changes in the initial function. This scenario was simulated in both directions, with either

Ligase or HDV functions representing the new function.

We started multiple simulations, each from different genotypes on the HDV network, and

challenged the populations to evolve on the Ligase fitness landscape. The starting genotypes

selected all had above wild-type HDV fitness and therefore would be likely to persist in a popu-

lation under selection for the HDV function. We recorded these simulations as movies to

observe the process of evolution toward the new Ligase function (Fig 3B and S2–S5 Movie).

We noticed that many of the individual simulations had periods during which the mean fitness

of the population plateaus at a specific, often low value for many generations (Fig 3B). To eval-

uate the average contribution of these periods of stasis, we repeated the simulation 100 times

and plotted the average fitness of the evolving population over time (Figs 4A and S9). We car-

ried out 100 replicates each for all of the different starting genotypes (Fig 4B and S2 Table). We

Genotype network intersections promote evolutionary innovation
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found that different genotypes on the HDV network resulted in consistently different average

rates of adaptation to the new Ligase function (Fig 4E). The maximum growth rate derived

from the regression analysis for each starting genotype found similar results (S10 Fig). It is

important to note that the rate of adaptation was not dependent or correlated with the muta-

tional distance between the starting and summit genotypes (S11 Fig).

Additionally, we found that there exist specific genotypes on the Ligase fitness landscape

that caused these periods of stasis and slower average rates of adaptation (Figs 4F and S12 and

S13). These genotypes are local peaks that are characterized by very few pathways to higher fit-

ness. Importantly, the genotypes that caused the longest periods of stasis and slowest rates of

adaptation are characterized by extensive reciprocal sign epistasis, meaning that achieving

higher fitness requires two or more mutational steps, but every initial step is deleterious. Spe-

cific starting genotypes on the HDV network frequently stalled at the same intermediate fitness

level, indicating that they were likely to encounter a specific stasis-causing fitness peak. It is

important to note that the dynamics of our simulations are not significantly altered by the

accuracy of low-fitness sequences. This is because the rate of adaptation is dominated by the

local fitness peaks that are surrounded by genotypes with very low fitness, but the precision of

our fitness measurements for these low-fitness genotypes does not alter our evolutionary

dynamics. As evidence, we observed nearly identical evolutionary outcomes when simulations

were repeated after 7,015 genotypes with fitness < 0.005 were converted to fitness = 0 (S14

Fig). Overall, the consistent rates of adaptation from multiple simulations are encouraging for

efforts aimed at forecasting evolutionary outcomes, especially in cases in which the underlying

fitness landscape can be measured or accurately estimated [26,36].

Fig 3. Periods of evolutionary stasis revealed by computational simulation of evolutionary innovation. (A) A landscape visualization of the two genotype networks.

The height of each node (z-axis) indicates the relative fitness for the HDV phenotype (red) and the Ligase phenotype (blue). Nodes represent genotypes and are connected

by an edge if they are different at one nucleotide position. Fitness is indicated by the height (z-axis), the size of the node, and the color saturation. Fitness values are

normalized so that both graphs are similar heights. Genotypes used to start evolutionary simulations are labeled with lower case for the genotypes with the highest HDV

fitness (a–p) and capital letters for genotypes with the highest Ligase fitness (A–Q). (B) Frames from simulations of evolving populations. Several examples are shown to

illustrate different rates of increase of “population fitness” over simulation time (“generations”). Each row shows the progress of a single simulation. The starting genotype

is indicated to the left. Each plot shows the genotypes present in the population with the number of generations of evolution labeled at the bottom. Genotypes present in

the population are indicated by yellow nodes and edges. The corresponding mean fitness of each population over time is shown in the plots to the right. During

simulations, the population size (N = 1,000) and mutation rate (μ = 0.01) were constant. HDV, Hepatitis Delta Virus.

https://doi.org/10.1371/journal.pbio.3000300.g003
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We next repeated the evolutionary simulations from the opposite perspective, starting with

genotypes from the Ligase side of the landscape with selection for improved HDV function.

This scenario models Ligase as the original function and HDV self-cleavage as the new func-

tion that is under selection following gene duplication. Surprisingly, we found that all of these

simulations got stuck at very low fitness for the full 1,000 generations (Figs 4C and 4D and

S15), resulting in significantly slower rates of adaptation (Fig 4G). The maximum growth rate

derived from the regression analysis for each starting genotype found similar results (S16 Fig).

We note that the simulations were done under identical population size and mutation rate,

and we therefore attribute the different evolutionary dynamics to properties of the fitness land-

scapes. The property identified that was likely to dictate evolutionary dynamics was the

Fig 4. Starting genotypes result in different rates of evolutionary adaptation. (A) Rates of Ligase adaptation from a single HDV genotype. Each trace shows the average

population fitness as a function of generation time for a separate simulation of 1,000 individuals each. The traces from 100 separate simulations are shown. Inset shows

minor fluctuations during periods of stasis. Data and Python scripts for evolutionary simulations can be found on GitLab. (B) Average rates of evolutionary adaptation of

Ligase activity starting from 17 genotypes. Each trace represents a different starting genotype (a–p and HDV reference) and shows the mean fitness of 100 simulations as a

function of time (“generation”). The y-axis is scaled to the maximum fitness on this landscape (“summit,” horizontal dashed line). The vertical dashed line marks

generation 200. Data and Python scripts for evolutionary simulations can be found on GitLab. (C) Rates of HDV adaptation from a single Ligase genotype. Data and

Python scripts for evolutionary simulations can be found on GitLab. (D) Average rates of evolutionary adaptation of HDV activity starting from 17 genotypes. Each trace

represents a different starting genotype (A–Q) and shows the mean fitness of 100 simulations as a function of time (“generation”). The y-axis is scaled to the maximum

fitness on this landscape (“summit,” horizontal dashed line). Data and Python scripts for evolutionary simulations can be found on GitLab. (E) Distributions of initial rates

of adaptation during simulations on the Ligase landscape. Initial rate is determined as the population fitness divided by the generations at 200 generations. Each violin plot

represents the distribution of 100 simulations starting from the same genotype, which is indicated on the x-axis. Maximum growth rate, determined from a cubic spline

regression, is also reported. Growth rate calculations and plots are reported in S10 Fig. Data and Python scripts for evolutionary simulations can be found on GitLab. (F)

Sign epistasis in the local fitness landscape of genotypes that cause periods of stasis in the Ligase landscape. The fitness of the stasis genotype is plotted at mutations = 0,

and this starting fitness is marked with a dashed line. The fitness of neighboring genotypes that differ by 1 or 2 mutations are shown. Distributions of initial rates of

adaptation during simulations on the HDV landscape. Data and Python scripts for plotting local fitness landscapes can be found on GitLab. (G) Distributions of initial

rates of adaptation during simulations on the HDV landscape. Growth rate calculations and plots are reported in S16 Fig. Data and Python scripts for evolutionary

simulations can be found on GitLab. (H) Sign epistasis in the local fitness landscape of genotypes that cause periods of stasis in the HDV landscape. Data and Python

scripts for plotting local fitness landscapes can be found on GitLab. HDV, Hepatitis Delta Virus; REF, reference.

https://doi.org/10.1371/journal.pbio.3000300.g004
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ruggedness of the landscape. We find that the HDV landscape is much more rugged than the

Ligase landscape, with more peaks and more extensive sign epistasis. The HDV landscape has

982 peaks, while the Ligase landscape has only 68, which is caused by more frequent instances

of sign epistasis in the HDV landscape. The severity of sign epistasis is also higher on the HDV

landscape, which can be seen in the extreme values in Fig 1C.

Neutral evolution model of evolutionary adaptation

The fact that some genotypes promoted very rapid adaptation supports the idea that neutral

evolution that enables a population to explore a genotype network can facilitate evolutionary

innovations [22,37]. We next modeled a period of neutral evolution prior to selection for the

new function. For these simulations, we allowed increasing amounts of neutral evolution from

0 to 1,000 generations at 100 generation increments. We simulated neutral evolution on both

the Ligase and HDV landscape starting from the summit genotype (Fig 4, genotypes a and A)

of one landscape prior to evolving under selection for the other function.

As expected, the mean fitness of the populations did not improve during periods of neutral

evolution, as indicated by the lag at the beginning of each simulation (Fig 5A and 5B and S17

and S18). However, we found that this period of neutral evolution increased the rate of adapta-

tion toward the new function when selection pressure was applied. We measured this increase

in adaptation as either the population fitness in the first 100 generations of selection for the

new function (termed adaptation rate) (Fig 5C and 5D) or as the maximum growth rate from

a nonlinear regression (S19 and S20 Fig). The adaptive advantage increased with longer peri-

ods of neutral evolution. We also found a corresponding increase in the final population fit-

ness obtained (Fig 5C and 5D). Interestingly, following as few as 400 generations of neutral

evolution, populations on the HDV landscape were able to reach the HDV summit (S18 Fig

and S7 and S9 Movie), which we did not observe without neutral evolution (S15 Fig). As gen-

erations of neutral evolution increased, the probability of a population reaching the HDV sum-

mit also increased. This trend was also observed on the Ligase landscape, where populations

often reach the summit without neutral evolution (S17 Fig and S10 Movie). Although neutral

evolution on the HDV landscape allowed some populations to reach the summit, it also

trapped some populations at suboptimal peaks with lower fitness than was reached by simula-

tions without neutral evolution. We also found that the neutral evolution increased the num-

ber of unique sequences explored by the population (Fig 5C and 5D). We conclude that the

period of neutral evolution improved adaptation rates because it allowed the population to for-

tuitously discover genotypes with easier paths to higher fitness.

Coselection model of evolutionary adaptation

We also modeled a scenario in which both functions were simultaneously under selection and

each function contributed to fitness (S21 and S22 Figs). For these simulations, we assigned each

genotype a fitness that was calculated by summing the HDV and Ligase fitness values, each mul-

tiplied by an adjustable weighting parameter. Before summing, we normalized the data by

dividing each fitness values by the maximum fitness value in that landscape such that the maxi-

mum fitness of both functions was fitness = 1. We found that under this scenario, the function

that was weighted more heavily would be optimized at the expense of the function with lower

weighting. Interestingly, when both functions were given equal weight, the result was stochastic,

and either HDV or Ligase could be optimized. We did not observe any instances in which the

population remained split with some genotypes being selected for high HDV fitness and others

with high Ligase fitness. This suggests that prior to gene duplication, a given population is likely

to have genes that are optimized for one function or the other but not both.
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Fig 5. The effects of neutral evolution on evolutionary adaptation. (A) Average rates of evolutionary adaptation of Ligase activity starting from the summit genotype of

the HDV landscape. Each trace represents a different number of generations of neutral evolution and shows the mean fitness of 100 simulations as a function of time

(“generation”). The y-axis is scaled to the maximum fitness on this landscape (“summit”). The vertical dashed line marks generation 200. Data and Python scripts for

evolutionary simulations can be found on GitLab. (B) Average rates of evolutionary adaptation of HDV activity starting from the summit genotype of the Ligase

landscape. Data and Python scripts for evolutionary simulations can be found on GitLab. (C) Distributions of rates of adaptation, final population fitness, and the

number of unique genotypes explored following generations of neutral evolution during simulations on the Ligase landscape. Each violin plot represents the distribution

of 100 simulations following the same length of neutral evolution, which is indicated on the x-axis. Adaptation rate is determined as the rate of population increase for

the first 100 generations following the neutral evolution. Final fitness is the mean population fitness at the end of 1,000 generations of evolution. Maximum growth rate,

derived from a cubic spline regression, is also reported. Growth rate calculations and plots are reported in S19 Fig. Data and Python scripts for evolutionary simulations

can be found on GitLab. (D) Distributions of rates of adaptation, final population fitness, and the number of unique genotypes explored following generations of neutral

evolution during simulations on the HDV landscape. Growth rate calculations and plots are reported in S20 Fig. Data and Python scripts for evolutionary simulations

can be found on GitLab. HDV, Hepatitis Delta Virus.

https://doi.org/10.1371/journal.pbio.3000300.g005
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Discussion

The goal of this study was to characterize the ribozyme fitness landscape at the intersection of

two genotype networks in order to advance our understanding of the challenges to evolution-

ary innovations at the molecular level. Until recently, the study of genotype networks was

mostly based on computational experiments, such as the thermodynamic prediction of RNA

secondary structures [38–40] or simplified models of protein structures [41]. These founda-

tional experiments established that there are numerous genotypes that can produce the same

phenotype, and these genotypes are connected by small mutational changes to produce net-

works that cover vast regions in the space of all possible genotypes. These networks were often

referred to as “neutral networks” because they did not assign a fitness value to each genotype

and only predicted a structure or “shape.” However, evolution does not act on shape alone. A

large body of research has used mathematical models to assign fitness values to genotypes in

order to evaluate evolution across genotype networks. Researchers can now use high-through-

put assays to assign experimentally determined fitness values to genotypes in order to study

the pathways to higher fitness [42–47]. The vast majority of experimental fitness landscapes

have focused on a single function. Our results build upon efforts toward looking at the inter-

face of different genotype networks. We can only evaluate how fitness landscapes contribute to

evolutionary innovation by focusing on multiple functions [24,48,49].

Using computational simulations, we found several differences in the evolutionary dynam-

ics on each landscape that have implications for evolutionary innovations. For example, our

results indicate that the order in which new functions arise can alter evolutionary dynamics

because optimizing HDV activity from sequences with high Ligase activity was much more

challenging than evolving in the reverse order. In addition, we found that specific properties of

the genotype networks dictated the rate of evolutionary adaptation of a new function. The

Ligase landscape was less rugged with fewer peaks, which allowed the more rapid evolutionary

adaptation of the new function in our simulations. Interestingly, we found that these differ-

ences in adaptation rates hold over a range of population sizes and mutation rates (S24 and

S25 Figs). This highlights that the severe ruggedness of the HDV landscape cannot be easily

overcome by changing model parameters. Periods of neutral evolution may be critical for evo-

lutionary optimization on severely rugged landscapes such as the HDV landscape [50,51]. Sev-

eral laboratory and theoretical studies have also found that periods of genetic drift or nearly

neutral evolution can improve adaptation rates [37,52]. On the other hand, it has been argued

that neutral drift is not necessary for crossing valleys in a fitness landscape, and the contribu-

tion of neutral drift becomes less significant for the evolution of complex traits involving mul-

tiple genes [53]. We observe that the ribozyme innovation studied here can evolve without

neutral evolution. Our results support the view that both neutral drift and directional selection

play important roles in the evolution of innovation [22], and their relative contribution will

depend on specific parameters such as time scales, population sizes, mutation rates, and the

underlying fitness landscape [50].

It is important to reiterate that it is difficult to predict how the relative activity of a protein

or RNA enzyme will translate to organismal fitness, especially when multiple enzymes interact

and are exposed to environmental changes. When experimental and computational advance-

ments enable more extensive mappings of genotype to fitness at the organismal level and

across multiple environments, these landscapes may or may not show properties similar to

protein and RNA fitness landscapes. We therefore see our evolutionary simulations as a way to

characterize multidimensional experimental fitness landscapes that allows for the stochastic

events needed to cross fitness valleys. As compared to previous analyses that predict the avoid-

ance of pathways with fitness valleys, our simulations emphasize that fitness peaks, not valleys,
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dominate adaptation rates. We predict that identifying and characterizing the sequence space

around fitness peaks will be necessary to move toward evolutionary predictions at the organis-

mal level [36,54].

Our results provide a glimpse into how intersection sequences promote the evolution of

new functions and enable the expansion of biodiversity. The high frequency of dual-function

intersection sequences in our data supports the idea that ancient genes that duplicated and

enabled radiation events [55] may be characterized by both significant functional overlaps and

a robust genotype network. Further investigations into intersection sequences and fitness land-

scapes will be required to fully evaluate this scenario. For example, our current library design

only investigates two nucleotides at each variable position, which represent the parsimonious

or “direct” pathways between the two reference genotypes. However, recent experimental evi-

dence from a protein enzyme supports the idea that higher-dimensional “indirect” pathways

can bypass epistasis and facilitate adaptation [56]. Further experiments with different library

designs will be required to determine how higher-dimensional landscapes contribute to evolu-

tionary innovations [38].

Our results support insights gained from earlier computational studies. For example, one

prior computational study of simple RNA secondary structures, termed “shapes,” looked at the

most probable new shapes that are 1 mutation away from sequences that form a canonical

tRNA structure [39]. The authors found that most single mutations produce very similar

shapes. However, they also found that there exist some single mutations that produce shapes

with considerable differences. The HDV and Ligase structures in the current study do not

share any structural similarity, but our results show that the shapes overlap extensively in

sequence space such that there is a high probability of finding one ribozyme in the neighbor-

hood of the other. This similarity between computational and experimental data is somewhat

surprising because the ribozyme phenotypes studied here require a precise tertiary structure to

achieve catalysis that is not taken into account by secondary structure prediction. Nevertheless,

the canonical base pairing interactions that are computationally predicted make up a large

component of the structural interactions needed for ribozyme folding, which may account for

the similarity between the results. Regardless, our results support the long-standing use of

computational prediction of RNA structures as a realistic model of the genotype-to-phenotype

relationship, which continues to inspire experiments. This also provides motivation for con-

tinued efforts to use experimental structure probing methods to improve the blind prediction

of RNA tertiary structure [57].

The decrease in the fitness of both functions at the intersection suggests that intermediate

forms are evolutionarily disfavored over the sequences that can do one function well [11]. The

evolution of innovation in this sequence space is therefore not only possible but probable

because, once a population discovers this region of sequence space, selection is likely to favor a

genotype with one function or the other. For example, we found that populations were about

equally likely to optimize either function when both functions were simultaneously under

selection and contributed equally to fitness. The importance of environmental changes should

not be overlooked. A sudden environmental shift could quickly favor one function over the

other, and a fluctuating environment could alter selection pressures and help maintain both

functions [58,59].

It remains unknown whether these characteristics are common or peculiar to the specific

phenotypes investigated here. Further research advancements will be required to study larger

expanses of genotype space needed to cover more mutational positions and the resulting

higher dimensionality. It will also be important to investigate whether historic evolutionary

innovations found in natural systems have properties like the model system studied here. The

high probability of finding dual-function sequences in our current data encourages the search
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for more genotype network intersections and motivates future research on the forecasting of

evolutionary innovations.

Materials and methods

Library design

For our experiments, we first identified an HDV and a Ligase reference sequence (Fig 1A). For

this purpose, we chose sequence variants that were expected to have near wild-type ribozyme

fitness and that were 14 mutations apart [24]. We then set out to construct a library of ribozyme

sequences that contained all the possible presence–absence combinations of these 14 nucleotide

differences. These sequence variants represent all the parsimonious intermediates on the evolu-

tionary trajectories between the two reference sequences. Library construction was accom-

plished by chemically synthesizing a degenerate DNA oligonucleotide that would serve as a

template for in vitro transcription with T7 RNA polymerase. At each position where the Ligase

and HDV reference ribozymes differed, the synthesis used equal mixtures of two nucleotide

phosphoramidites, generating approximately equal probability of both sequence variants. This

creates 214 = 16,384 ribozyme variants. We synthesized two such libraries, one “HDV library”

with a 50-leader sequence that is cleaved by variants with the HDV phenotype and a second

“Ligase library” that begins at the 50-end of the Ligase ribozyme so that variants with the Ligase

phenotype could react with a separate substrate oligonucleotide [23]. A common sequence was

added to the 30-end of both libraries to serve as a universal primer binding site for reverse tran-

scription [60]. Oligonucleotides used in this experiment are listed in S1 Table.

Co-transcriptional cleavage assay

The sample preparation was done entirely in triplicate, yielding 3 biological replicates. The

ssDNA ultramer cleavage library used for in vitro transcription of the ribozyme mutants was

annealed to the T7-TOP+ primer. 20 picomoles each of DNA template and primer were heated

for 5 min at 98˚C in 10 μL final volume of custom T7 Mg10 buffer (500 μL 1 M Tris [pH 7.5],

50 μL 1 M DTT, 20 μL 1 M spermidine, 100 μL 1 M MgCl2, 330 μL RNase-free water). The

template and primer were then diluted 10-fold and cooled to room temperature. 2 μL of tem-

plate and primer were then transcribed in vitro in a 50 μL reaction with 5 μL T7 Mg10 buffer,

1 μL rNTP (25 mM; New England Biolabs, Ipswich, MA, USA), 1 μL T7 RNA polymerase (200

units; Thermo Fisher Scientific, Waltham, MA, USA) and 41 μL RNase-free water (Ambion,

Foster City, CA, USA) at 37˚C for 20 min. The transcription was then terminated by adding

15 μL of 50 mM EDTA. Although the total amount of cleaved RNA increases during transcrip-

tion, the ratio of cleaved to uncleaved remains the same as long as the rate of transcription is

constant, which is true for moderately short transcription times before reagents become lim-

ited [61]. 20 min was determined to be the optimal time for transcription by transcribing the

library at multiple time points and measuring RNA levels using denaturing PAGE (S23A Fig).

20 min was selected as optimal because it was still during linear growth before reaching a pla-

teau. The transcription reaction was then cleaned and concentrated with Direct-zol RNA

MicroPrep w/ TRI-Reagent (Zymo Research, Irvine, CA, USA) to 7 μL. The concentration of

the RNA sample was then determined using a spectrophotometer (ThermoFisher NanoDrop;

Thermo Fisher Scientific), and the samples were normalized to 5 μM. The transcribed and

cleaned RNA (5 picomoles) was mixed with 20 picomoles of RT library primer (S1 Table) in a

volume of 10 μL and was heated at 72˚C for 3 min, then cooled on ice. 4 μL SMARTScribe 5×
First-Strand Buffer (Clontech, Takara Bio, Mountain View, CA, USA), 2 μL dNTP (10 mM),

2 μL DTT (20 mM), 2 μL phased template-switching oligo mix (10 μM), 1 μL water, and 1 μL

SMARTScribe Reverse Transcriptase (10 units; Clontech) were then added to the RNA
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template and RT primer. The phased template-switching oligo mix consisted of 4 oligonucleo-

tides that were phased by the addition of 9, 12, 15, or 18 nucleotides (S1 Table). The mixture

was then incubated at 42˚C for 90 min. The reaction was stopped and the RNA degraded by

heating the sample to 72˚C for 15 min. The cDNA was then purified using DNA Clean & Con-

centrator-5 (Zymo Research) and eluted into 7 μL water.

Ligation assay

The ssDNA ultramer ligation library used for in vitro transcription of the ribozyme mutants

was annealed to the T7-TOP+ primer. 20 picomoles each of DNA template and primer were

heated for 5 min at 98˚C in 10 μL water. The template and primer were then transcribed in

vitro in a 30 μL reaction with 12 μL rNTP (25 mM; New England Biolabs), 3 μL MEGAshort-

script T7 Reaction Buffer (10×, Thermo Fisher Scientific), and 3 μL MEGAshortscript T7 RNA

Polymerase (Thermo Fisher Scientific) at 37˚C for 2 hours. The DNA was then degraded using

2 μL TURBO DNase (2 units/μL; Thermo Fisher Scientific) and incubating at 37˚C for 15 min.

The transcription reaction was then cleaned and concentrated with Direct-zol RNA MicroPrep

with TRI-Reagent (Zymo Research) to 7 μL. The concentration of the RNA sample was then

determined using a spectrophotometer (ThermoFisher NanoDrop; Thermo Fisher Scientific),

and the samples were normalized to 5 μM. To assess the starting abundance of each genotype

prior to in vitro selection, a portion of each sample was aliquoted and reverse transcribed

using the template-switching protocol identical to what was used for the HDV library. The

transcribed and cleaned RNA (25 picomoles) was mixed with 200 mM Tris (pH 7.5) in a vol-

ume of 10 μL and heated at 65˚C for 2 min and then cooled to room temperature. 500 pico-

moles of ligation substrate (S1 Table) were then added with 4 μL MgCl2 (50 mM) for a total

volume of 20 μL. The mixture was then incubated for 2 hours at 37˚C. To reverse transcribe

the samples, 10 μL of the ligation reaction was heated with 40 picomoles of RT library primer

and heated to 72˚C for 3 min, then cooled on ice. 4 μL SMARTScribe 5× First-Strand Buffer

(Clontech), 2 μL dNTP (10 mM), 2 μL DTT (20 mM), 1 μL water, and 1 μL SMARTScribe

Reverse Transcriptase (10 units; Clontech) were then added to the RNA template and RT

primer. The mixture was then incubated at 42˚C for 90 min. The reaction was stopped and the

RNA degraded by heating the sample to 72˚C for 15 min. The cDNA was then purified using

DNA Clean & Concentrator-5 (Zymo Research) and eluted into 10 μL water. To amplify the

cDNA that had performed the ligation reaction, a mix of phased selective-ligation PCR prim-

ers were used. The PCR reaction consisted of 1 μL purified cDNA, 12.5 μL KAPA HiFi Hot-

Start ReadyMix (2×; KAPA Biosystems, Wilmington, MA, USA), 2.5 μL selective-ligation

primer, 2.5 μL RT primer, and 5 μL water. To prevent bias during the PCR amplification, mul-

tiple cycles of PCR were examined using gel electrophoresis, and an appropriate PCR cycle

was chosen because it was still in linear growth (S8B Fig). Each PCR cycle consisted of 98˚C

for 10 s, 63˚C for 30 s, and 72˚C for 30 s. The PCR cDNA product was then cleaned using

DNA Clean & Concentrator-5 (Zymo Research) and eluted in 12 μL water.

Illumina adapter PCR

In preparation for high-throughput sequencing, Illumina adapter sequences were added to the

cDNA using PCR. Each of the 9 samples (3 HDV, 3 ligated, 3 unligated) were each assigned a

unique combination of sequencing indices. The PCR reaction consisted of 1 μL purified cDNA,

12.5 μL KAPA HiFi HotStart ReadyMix (2×, KAPA Biosystems), 2.5 μL forward primer, 2.5 μL

reverse primer (Illumina Nextera Index Kit; San Diego, CA, USA), and 5 μL water. To prevent

bias during the PCR amplification, multiple cycles of PCR were examined using gel electropho-

resis, and an appropriate PCR cycle was chosen because it was still in linear growth (S23B Fig).

Genotype network intersections promote evolutionary innovation

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000300 May 28, 2019 15 / 29

https://doi.org/10.1371/journal.pbio.3000300


Each PCR cycle consisted of 98˚C for 10 s, 63˚C for 30 s, and 72˚C for 30 s. The PCR cDNA

product was then cleaned using DNA Clean & Concentrator-5 (Zymo Research) and eluted in

30 μL water. The final product was then verified using gel electrophoresis.

High-throughput sequencing

In preparation for high-throughput sequencing, the 3 cleavage replicates, 3 ligated replicates,

and 3 unligated replicates, each with unique Illumina adapter barcodes, were pooled and sent

to the University of Oregon Genomics and Cell Characterization Core Facility (University of

Oregon, Eugene, OR, USA). The samples were sequenced using Illumina NextSeq 500 Single

End 150 with 25% PhiX addition. This generated approximately 125 million reads (Cluster PF

Yield) across the 9 samples.

Data analysis

Sequencing data were analyzed using custom Python scripts that are available on GitLab, and

all analyses were performed with Python software (Version 3.7.0). For each sequencing read,

these scripts identified a universally conserved 30 handle, determined the reacted state (ligated/

unligated or cleaved/uncleaved), and isolated the 14 mutational nucleotides to determine

genotype. This process was repeated for each experimental replicate. The uncatalyzed cleavage

rate was estimated to be 7 × 10−7 min−1 [62]. The rates of template-directed, nonenzymatic oli-

gonucleotide ligation were estimated to be 2.4 × 10−10 min−1 for 20,50-linkage and 1.5 × 10−8

min−1 for 30,50-linkage [63,64]. Correlation coefficients were determined between pairs of rep-

licates (S4A Fig). The distribution of HDV and Ligase sequencing read counts were also deter-

mined to verify sequencing quality (S6 Fig). The distribution of sequencing read counts for

genotypes that were not expected to be in the libraries but were found in our sequencing data

was also determined (S7 Fig).

Ribozyme fitness calculations from sequence data

Fitness values for each genotype were determined from the sequence data. Fitness values for

the HDV genotypes were calculated from the fraction of each genotype found in the cleaved

form divided by the total reads of that genotype in that sample. These fraction cleaved values

were normalized by dividing by the fraction cleaved of a HDV genotype that was in the origi-

nal intersection paper [24], resulting in the HDV fitness values reported. This resulted in nor-

malizing the data such that the original prototype HDV ribozyme sequence (which is not

included in our library) would be equal to 1. The Ligase fitness was determined by the level of

enrichment following a round of selection for Ligase activity. The relative abundance of each

genotype was determined by dividing the reads corresponding to that genotype by the total

number of reads in that replicate sample. The change in abundance was determined by taking

the relative abundance of a specific genotype in the sample selected for ligation activity and

dividing it by the relative abundance in the initial library before selection. This value was nor-

malized by dividing by the change in abundance for a Ligase genotype that was in the original

intersection paper, resulting in the Ligase fitness values reported. This resulted in normalizing

the data such that the original prototype Ligase ribozyme sequence (which is not included in

our library) would be equal to 1.

Validation of sequencing-based assays

In order to validate the high-throughput sequencing fitness measurements for HDV (self-

cleaving) and Ligase (self-ligation) functions, we developed in vitro biochemical assays. For
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the HDV activity, we used a gel-based assay (PAGE). Thirteen sequences were ordered as oli-

gos, transcribed, and run on a polyacrylamide gel. Samples were run on 10% denaturing poly-

acrylamide gel, visualized with GelRed (Biotium, Fremont, CA, USA), and quantified by

densitometry. The cleaved and uncleaved products separate in the gel and allow for a calcula-

tion of percent cleaved (S5A Fig). Because of the difficulty of getting accurate measurements

for Ligase activity using a gel-based assay, we developed a qPCR assay to detect low rates of

self-ligation. We cloned several sequences from our library, representing a random sampling

of sequences. Each sequence was sequenced to determine the genotype and transcribed to

RNA. The RNA was incubated with the Ligase substrate and was allowed to react under identi-

cal conditions to the sequencing-based assay. This reaction was reverse transcribed to cDNA

and PCR amplified with two primer pairs. One pair was specific to the substrate to measure

ligated RNA, and the other pair was specific to the ribozyme and measured total RNA. The

ratio of the Cq values of the two PCR signals was used to calculate percent ligated (S5B Fig).

We also ordered 4 specific intersection sequences that had very low Ligase activity to validate

that low-fitness genotypes are in fact active Ligase ribozymes (S5C Fig). These sequences were

analyzed using the qPCR assay, and it is important to note that the ligation activity is depen-

dent on the presence of the substrate. When a control reaction was performed with no sub-

strate, the percent ligated decreased by over 60,000-fold.

Genotype network and fitness landscape construction

Visualizations of fitness landscapes were constructed using Gephi [65]. Each node represents a

unique genotype and edges connecting genotypes represent a single mutation. ForceAtlas 2

was used to approximate genotype repulsion using a Barnes–Hut calculation. The z-axis in the

fitness landscape (Fig 3A) was generated using the Network Splitter 3D plugin. Peaks in each

fitness landscape were defined as genotypes that were surrounded by mutational neighbors

with lower relative fitness. This calculation incorporated the measurement error (delta)

between replicates. Ruggedness for each landscape was calculated as the average number of

peaks within subgraphs [66]. Each subgraph contains 4 mutational positions with 16 geno-

types, and every possible subgraph within each landscape was assessed for peaks. Pairwise epis-

tasis was calculated as ε = log10 (WAB
�W0/WA

�WB), where WA and WB are the fitness of

RNA variants with a single mutation, WAB is the fitness of the variant with both mutations,

and W0 is the fitness of the background genotype with no mutations [6,67]. Epistasis was cal-

culated for every subgraph of 2 mutational positions containing 4 genotypes. Within each sub-

graph, there exist equal positive and negative epistatic interactions depending on which

genotype is used as the background genotype (W0). Therefore, only the magnitude of epistasis

within a subgraph is reported.

Evolutionary simulations

Computational simulations of evolution were accomplished using custom Python scripts

(RiboEvolve.py) that model evolution based on the Wright–Fisher approach [35,67]. Simula-

tions were performed on the Boise State R2 computer cluster [68]. A range of population sizes

(25, 50, 125, 250, 500, 1,000) and mutation rates (0.0001, 0.01, 0.1, 1.0) were explored (S24 and

S25 Figs). For simulations on the Ligase and HDV landscapes, the summit genotype of the

opposing landscape was used as the starting genotype. The results show that very high muta-

tion rate (1.0) leads to no adaptation. Very low mutation rates (0.0001) result in no observable

evolution under the time frame of our simulations, which are limited by computational

expense. We found that mutation rates of 0.01 and 0.1 gave similar results, except that 0.1

reached the summits more quickly, providing less resolution between different adaptation
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dynamics from different starting genotypes. We therefore prefer the lower mutation rate of

0.01, which we used in our analysis. With this mutation rate, there is only a subtle effect of

population size. Therefore, a population size of N = 1,000 and mutation rate (μ) of 0.01 were

used for the remaining simulations.

Simulation started with 1,000 individuals of the same genotype. Every generation (update),

a new population of 1,000 genotypes was generated in the following way. First, a parent geno-

type from the population was selected at random. The fitness of the genotype was compared to

a randomly selected value from a fitness range (between 0 and 1). If the genotype fitness was

less than the random value, the genotype was not placed in the new generation. If the genotype

fitness was greater than or equal to the random value, it was placed in the new generation, with

a chance of mutating at a single, randomly chosen nucleotide position. Mutations occurred if a

randomly generated number was lower than the mutation rate set at the beginning of the sim-

ulation and remained constant (μ = 0.01). This process was repeated until 1,000 individuals

were placed in the new generation. The simulation then repeated this process for 1,000 genera-

tions. We carried out the simulations on the Ligase landscape starting from the 17 genotypes

with HDV fitness� 1 and did so for a total of 100 replicates for each genotype (S9 Fig). The

100 replicates for each starting genotype were averaged (Fig 4B), and the initial rate of adapta-

tion and unique genotypes explored for each starting genotype were calculated. For each simu-

lation, simulation rate was determined by subtracting the population fitness at generation = 0

from the population fitness at generation = 200 and dividing this value by 200 generations.

Using a cubic spline regression (S10 Fig), we determined the maximum growth rate for the

mean fitness of the 100 replicates for each starting genotype (Fig 4E and 4G). We also ran sim-

ulations on the HDV landscape starting from the 17 genotypes with the highest Ligase geno-

types that also had nonzero HDV fitness. These were repeated for 100 replicates (S15 Fig) and

were averaged (Fig 4D). Rate per simulation for the first 200 generations was also calculated

for these simulations (Fig 4G). The maximum growth rate for the mean fitness of the 100 repli-

cates for each starting genotype was also determined (S16 Fig).

To understand the role that periods of neutral evolution might play in the evolution of

innovations, simulations were performed that introduced a range of neutral evolution intervals

(0–1,000 generations). For simulations on the Ligase and HDV landscapes, the summit geno-

type of the opposing landscape was used as the starting genotype. Following generations of

neutral evolution, selection pressure was immediately applied for the remainder of the 1,000

generations. This was repeated in each scenario for 100 replicates (S17 and S18 Figs). Lastly,

simulations were conducted on an HDV–Ligase coselection landscape that allows selection to

act upon both functions simultaneously. For this model, the fitness was calculated as WHDV
�

βHDV + WLigase
� βLigase, where W indicates the fitness of that function and β indicates a weight-

ing parameter that can be adjusted (S21 and S22 Figs). Otherwise, simulations were the same

as above.

Supporting information

S1 Fig. Overview of high-throughput ribozyme functional assays. Detailed approach used to

assess the relative fitness of each of the 16,384 genotypes for two functions: self-cleavage

(HDV) and self-ligation (Ligase). Note that in order to assess the preselection frequency of

genotypes in the self-ligation assay, a portion of the RNA library is processed using the proto-

col used in the self-cleavage assay (dotted line). HDV, Hepatitis Delta Virus.

(PNG)

S2 Fig. Overlay of HDV and Ligase genotype networks with varying fitness cutoffs. Each

plot indicates the overlay of the two networks with all genotypes with fitness values below the
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cutoff removed. The size of the node indicates relative fitness, and nodes are colored based on

their dominant activity (red = HDV, blue = Ligase). Below each plot is the range of mutations

needed to go from one network to the other. The distribution of the number of mutations

required is displayed for each fitness cutoff in Fig 2A. HDV, Hepatitis Delta Virus.

(PNG)

S3 Fig. Correlation between mutational distance from the opposing genotype network and

active connections. The mutational distance was calculated from varying the fitness cutoff for

each landscape as in Fig 2A. As the mutational distance for genotypes shifted, we calculated

the number of active connections on the initial function landscape, as well as connection to

the new function landscape. This was repeated using the HDV and the Ligase function as the

initial function. Data and Python scripts for connection calculations can be found on GitLab.

HDV, Hepatitis Delta Virus.

(PNG)

S4 Fig. High-throughput sequencing results for HDV and Ligase. (A) Correlation of total

HDV and Ligase reads for each of the 3 replicates. Each figure consists of all 16,384 genotypes

presented in this study. Each data point represents the frequency that a specific sequence was

observed in a particular replicate (y-axis) versus another replicate (x-axis). Sequence kernel

density estimation is also reported from each replicate in the jointplot (Seaborn python pack-

age). The number of reads on the x- and y-axis are log10 transformed. Pearson (R2) and Spear-

man (ρ) correlation is reported for each correlation. Data and Python scripts for correlations

can be found on GitLab. (B) Error rates calculated from base miscalls in the PhiX reference

genome. Error rate (y-axis) is shown for the 14 positions (x-axis) where our genotypes are

defined. Each position is read in 4 different sequencing cycles, and error rates are reported as

the average error rate of these 4 cycles. Dashed blue line indicates the average error rate across

all 14 mutational positions. Error rates are calculated by aligning each PhiX sequence read in

our data to the reference PhiX genome and counting mismatches at each sequence cycle. Data

and Python scripts for the calculation of sequencing error rates can be found on GitLab. HDV,

Hepatitis Delta Virus; PhiX, phi X bacteriophage genome control.

(PNG)

S5 Fig. Validation of high-throughput-sequencing–based assays. (A) Correlation of fitness

values for 13 unique ribozyme genotypes assessed by high-throughput sequencing and gel-

based assay (PAGE). Both methods assessed the fraction cleaved (fitness) of each genotype.

Pearson and Spearman correlations are reported. Data and Python scripts for correlation can

be found on GitLab. (B) Correlation of fitness values for 19 unique ribozyme genotypes

assessed by high-throughput sequencing and qPCR assays. Data and Python scripts for corre-

lation can be found on GitLab. (C) qPCR measurements of 4 low-fitness intersection

sequences. The 4 intersection sequences were determined to have low fitness (<0.03) by the

high-throughput sequencing assay. qPCR, quantitative Polymerase Chain Reaction.

(PNG)

S6 Fig. Distribution of expected sequencing read counts. (A) Histograms indicating the

average read counts for each individual genotype in the designed HDV library for all 3 repli-

cates. The mean read count for each genotype across HDV replicates was 369. Dashed line

indicates the mean within a replicate. Data and Python scripts for the calculation and plotting

of the read counts can be found on GitLab. (B) Histograms indicating the average read counts

for each individual genotype in the designed Ligase library for all 3 replicates. The mean read

count for each genotype across Ligase replicates was 230. Dashed line indicates the mean

within a replicate. Data and Python scripts for the calculation and plotting of the read counts
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can be found on GitLab. HDV, Hepatitis Delta Virus.

(PNG)

S7 Fig. Distribution of unexpected sequencing read counts. (A) Histograms indicating the

average read counts for each unexpected genotype found in the HDV sequencing samples.

Unexpected genotypes were those that were not expected in our sequencing library but were

found in the sequencing data. Dashed line indicates the mean within a replicate. Data and

Python scripts for the calculation and plotting of the read counts can be found on GitLab. (B)

Histograms indicating the average read counts for each unexpected genotype found in the

Ligase sequencing samples. Dashed line indicates the mean within a replicate. Data and Python

scripts for the calculation and plotting of the read counts can be found on GitLab. HDV, Hepa-

titis Delta Virus.

(PNG)

S8 Fig. Evaluation of Ligase fitness measurements. (A) Correlation of Ligase fitness and the

relative frequency preselection. Each figure consists of all 16,384 genotypes presented in this

study. Each data point represents the frequency that a specific sequence was observed in a par-

ticular replicate preselection (y-axis) versus the average calculated Ligase “fitness.” Data and

Python scripts for correlation can be found on GitLab. (B) Correlation of Ligase fitness and

relative rank preselection. Each data point represents the relative rank (1–16,384) based on the

average number of reads per replicate preselection (y-axis) versus the average calculated Ligase

“fitness.” Data and Python scripts for correlation can be found on GitLab. (C) Ligase fitness

landscape depicted as a function of estimated “ligation rate.” Ligation rate was estimated using

a reference genotype that was found in our data set and the original intersection study [24].

The ligation rates for template-directed, nonenzymatic oligonucleotide ligation are estimated

as 2.4 × 10−10 min−1 for 20–50 ligation [64] and 1.5 × 10−8 min−1 for 30–50 ligation [63]. Data

and Python scripts for the calculation and plotting of relative ligation rate can be found on

GitLab.

(PNG)

S9 Fig. Rate of adaptation for populations starting from different genotypes on the Ligase

landscape. Each trace shows the increase in population fitness over generation time for a sin-

gle simulation of 1,000 individuals. Each plot shows 100 simulations starting from the same

genotype. All starting genotypes has HDV fitness� 1. The letter above each subplot indicates

the starting point from the network, as shown in Fig 3A. Letters were assigned alphabetically

based on highest to lowest HDV fitness, and genotype a represents the genotype with the high-

est measured HDV fitness. The graphs are ordered from fastest to slowest initial rates (Fig 4D).

Data and Python scripts for evolutionary simulations can be found on GitLab. HDV, Hepatitis

Delta Virus.

(PNG)

S10 Fig. Regression analysis of average rates of fitness optimization on the Ligase land-

scape. Regression was performed for each starting genotype (REF–p). Solid points are the

average of 100 replicates of simulated evolution and correspond to the data from Fig 4B.

Dashed black lines are the fitted regression line. The maximum growth rate (μ) derived from

the regression is reported on each plot. Data and Python scripts for the regression analysis can

be found on GitLab. REF, reference.

(PNG)

S11 Fig. Relationship between maximum growth rate and mutational distance. Mutational

distance is calculated as the number of mutations between the summit genotype and a given
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starting genotype for the evolutionary simulations (Fig 4). Data and Python scripts for the rela-

tionship can be found on GitLab.

(PNG)

S12 Fig. Trajectories away from stasis genotypes. (A) Each line leads from the stasis genotype

(mutations = 0) to 1 and 2 mutations away. All 69 stasis genotypes (peaks) in the Ligase fitness

landscape are depicted. The number on each graph represents the number of 2-mutation path-

ways to higher fitness from each stasis genotype. The yellow box indicates the genotype with

the highest measured Ligase fitness. Data and Python scripts for calculation and plotting of

mutational pathways can be found on GitLab. (B) The distribution of 2-mutation pathways to

higher-fitness genotypes from each stasis genotypes in the Ligase landscape. The dotted verti-

cal line indicates the mean of the distribution.

(PNG)

S13 Fig. Characterization of stasis genotype I. Stasis genotype I from Fig 4F is depicted in

the center with each of the 2 mutation trajectories. None of the 182 2-mutation trajectories

lead to higher fitness than the stasis genotype (mutation = 0). The pathways 2 mutations from

each of the 14 genotypes that are a single mutation away from the stasis genotype are individu-

ally depicted. In total, 42 out of a possible 2,184 3-mutation trajectories yield a higher fitness

than the initial stasis genotype (dashed line). Data and Python scripts for calculation and plot-

ting of mutational pathways can be found on GitLab.

(PNG)

S14 Fig. Rates of adaptation are not altered by fitness precision of low-fitness genotypes.

Final fitness of 100 replicate simulations on the original Ligase landscape (red) or a landscape

where the lowest-fitness genotypes were converted to fitness = 0 (gray), if fitness was less than

0.005 (7,015 genotypes converted to fitness = 0). Simulations were carried out as in Fig 4 of the

main text, with 1,000 individuals and 1,000 generations each. Data and Python scripts for evo-

lutionary simulations can be found on GitLab.

(PNG)

S15 Fig. Rate of adaptation for populations starting from different genotypes on the HDV

landscape. Each trace shows the increase in population fitness over generation time for a sin-

gle simulation of 1,000 individuals. Each plot shows 100 simulations starting from the same

genotype. The letter above each subplot indicates the starting point from the network, as

shown in Fig 3A. Letters were assigned alphabetically based on highest to lowest Ligase fitness,

and genotype A represents the genotype with the highest measured Ligase fitness. The graphs

are ordered from fastest to slowest initial rates (Fig 4E). Data and Python scripts for evolution-

ary simulations can be found on GitLab.

(PNG)

S16 Fig. Regression analysis of average rates of fitness optimization on the HDV land-

scape. Regression was performed for each starting genotype (A–Q). Solid points are the aver-

age of 100 replicates of simulated evolution and correspond to the data from Fig 4D. Dashed

black lines are the fitted regression line. The maximum growth rate (μ) derived from the

regression is reported on each plot. Data and Python scripts for the regression analysis can be

found on GitLab. HDV, Hepatitis Delta Virus.

(PNG)

S17 Fig. Rate of adaptation for populations following different lengths of neutral evolution

on the Ligase landscape. Each trace shows the increase in population fitness over generation

time for a single simulation of 1,000 individuals. Each plot shows 100 simulations starting
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from the summit genotype of the HDV landscape. The number above each subplot indicates

the number of generations of neutral evolution before selection was applied as shown in Fig 5.

Data and Python scripts for evolutionary simulations can be found on GitLab. HDV, Hepatitis

Delta Virus.

(PNG)

S18 Fig. Rate of adaptation for populations following different lengths of neutral evolution

on the HDV landscape. Each trace shows the increase in population fitness over generation

time for a single simulation of 1,000 individuals. Each plot shows 100 simulations starting

from the summit genotype of the Ligase landscape. The number above each subplot indicates

the number of generations of neutral evolution before selection was applied as shown in Fig 5.

Data and Python scripts for evolutionary simulations can be found on GitLab. HDV, Hepatitis

Delta Virus.

(PNG)

S19 Fig. Regression analysis of average rates of fitness optimization on the Ligase land-

scape following neutral evolution. Cubic spline regression was performed for the range of

periods of neutral evolution (0–1,000). Solid points are the average of 100 replicates of simu-

lated evolution and correspond to the data from Fig 5A. Dashed black lines are the fitted

regression line. The maximum growth rate (μ) derived from the regression is reported on each

plot. Data and Python scripts for the regression analysis can be found on GitLab.

(PNG)

S20 Fig. Regression analysis of average rates of fitness optimization on the HDV landscape

following neutral evolution. Cubic spline regression was performed for the range of periods of

neutral evolution (0–1,000). Solid points are the average of 100 replicates of simulated evolution

and correspond to the data from Fig 5B. Dashed black lines are the fitted regression line. The

maximum growth rate (μ) derived from the regression is reported on each plot. Data and

Python scripts for the regression analysis can be found on GitLab. HDV, Hepatitis Delta Virus.

(PNG)

S21 Fig. Evolutionary simulations on the HDV–Ligase coselect fitness landscapes. (A) The

starting population that was randomly selected from the 3,432 genotypes that are 7 mutations

from HDV reference and Ligase reference. (B) Average rates of evolutionary adaptation on the

HDV–Ligase coselect fitness landscapes with varying weighted parameters (β) for each func-

tion. Line indicates the average of 100 replicates (S22 Fig). Total population fitness indicates

the fitness resulting from the following equation, WHDV
� βHDV + WLigase

� βLigase, where W
indicates the fitness of that function and β indicates a weighting parameter that was adjusted.

The HDV and Ligase population is also plotted independently to indicate which function is

the dominant contributor to the total fitness. Line color indicates the weighting parameters

used in the simulation as indicated in the top-right inset. Data and Python scripts for evolu-

tionary simulations can be found on GitLab. HDV, Hepatitis Delta Virus.

(PNG)

S22 Fig. Individual traces of evolutionary adaptation on HDV–Ligase coselect fitness land-

scapes. (A–C) Left plot indicates the architecture of the fitness landscape for each combination

of weighting parameters (β). Total fitness (calculated as WHDV
� βHDV + WLigase

� βLigase), HDV

fitness, and Ligase fitness are shown for each individual simulation replicate. Color of lines

correspond to the weighting parameters discussed in S21 Fig. Data and Python scripts for evo-

lutionary simulations can be found on GitLab. HDV, Hepatitis Delta Virus.

(PNG)
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S23 Fig. Time courses for sample optimization and validation of sequencing fitness values.

(A) Time-course transcription for total RNA yield using the developed co-transcriptional

cleavage assay. Data points indicate the mean RNA yield of 5 replicates. Error bars are stan-

dard error of the mean. Samples were run on 10% denaturing polyacrylamide gel, visualized

with GelRed (Biotium), and quantified by densitometry. The time chosen as optimal (20 min)

is indicated with a box. (B) Time-course PCR was performed for the selective-ligation PCR

and each Illumina adapter PCR for each replicate (blue, green, red). Samples were run on 2%

agarose gel, visualized with GelRed (Biotium), and quantified by densitometry. The black

box indicates the PCR cycle that was determined to be optimal for each PCR reaction.

(PNG)

S24 Fig. Rate of adaptation for populations using a range of population sizes and mutation

rates. Average rates of evolutionary adaptation of HDV and Ligase activity starting from the

summit genotype of the opposing landscape. Trace color indicates the varying population sizes

(25–1,000) as indicated in the legend. Each plot indicates a different mutation rate (0.0001–

1.0). Each trace shows the mean fitness of 100 simulations as a function of time (generation).

The vertical dashed line marks generation 200. Data and Python scripts for evolutionary simu-

lations can be found on GitLab. HDV, Hepatitis Delta Virus.

(PNG)

S25 Fig. Initial rates of adaptation for populations using a range of population sizes and

mutation. Distributions of initial rates of adaptation on the Ligase and HDV landscape. Initial

rate is determined as the rate of population increase for the first 200 generations. Each violin

plot represents the distribution of 100 simulations using the same population size and muta-

tion rate. Plot color indicates the varying population sizes (25–1,000) as indicated in the leg-

end. Mutation rate (0.0001–1.0) is indicated on the x-axis. Data and Python scripts for

evolutionary simulations can be found on GitLab. HDV, Hepatitis Delta Virus.

(PNG)

S1 Table. Oligonucleotides used in this study.

(PNG)

S2 Table. Starting genotypes used in evolution simulations. Genotypes are represented by

the unique combination of nucleotides in the 14 variable positions of the library. Starting

point letters correspond to Fig 3A. HDV and Ligase fitness are colored with bar graphs indicat-

ing the relative fitness. HDV, Hepatitis Delta Virus.

(PNG)

S1 Data. HDV–Ligase fitness measurements from high-throughput sequencing assays. The

fitness measurements for each of the 16,384 unique genotypes presented in this study. The

genotypes are displayed as the 14 mutational positions. HDV and Ligase fitness values are col-

ored according to the relative fitness for easier interpretation. Delta values were calculated as

the standard error between the 3 sequencing replicates for each function. HDV, Hepatitis

Delta Virus.

(XLSX)

S1 Movie. Aerial overview of the HDV–Ligase fitness landscape. Overview of the empirical

HDV–Ligase fitness landscape presented in Fig 3A. Each node represents an individual geno-

type, and edges connect nodes that differ by a single nucleotide. The size and height of each

node indicates the relative genotype fitness (HDV = red, Ligase = blue). Data and Python

scripts for evolutionary simulations can be found on GitLab. HDV, Hepatitis Delta Virus.

(AVI)
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S2 Movie. Simulated evolution on Ligase landscape starting at genotype k. White nodes are

genotypes in the fitness landscape. Genotypes are connected by light blue edges if they differ by a

single nucleotide change. The size of the blue circles depicts the relative proportion of the simu-

lated population at that genotype. The y-axis is relative Ligase fitness. The x-axis is number of

nucleotide differences from the HDV reference sequence (mutational distance). The number

above the graph represents the generation number. The population average is also depicted with

the number of generations on the x-axis and mean population fitness on the y-axis. Lastly, the

population diversity at a given generation is plotted as a function of generational time. Population

diversity indicates the number of unique genotypes present in the population. Data and Python

scripts for evolutionary simulations can be found on GitLab. HDV, Hepatitis Delta Virus.

(MP4)

S3 Movie. Simulated evolution on Ligase landscape starting at genotype a. White nodes are

genotypes in the fitness landscape. Genotypes are connected by light blue edges if they differ by a

single nucleotide change. The size of the blue circles depicts the relative proportion of the simu-

lated population at that genotype. The y-axis is relative Ligase fitness. The x-axis is number of

nucleotide differences from the HDV reference sequence (mutational distance). The number

above the graph represents the generation number. The population average is also depicted with

the number of generations on the x-axis and mean population fitness on the y-axis. Lastly, the

population diversity at a given generation is plotted as a function of generational time. Population

diversity indicates the number of unique genotypes present in the population. Data and Python

scripts for evolutionary simulations can be found on GitLab. HDV, Hepatitis Delta Virus.

(MP4)

S4 Movie. Simulated evolution on Ligase landscape starting at genotype b. White nodes are

genotypes in the fitness landscape. Genotypes are connected by light blue edges if they differ

by a single nucleotide change. The size of the blue circles depicts the relative proportion of the

simulated population at that genotype. The y-axis is relative Ligase fitness. The x-axis is num-

ber of nucleotide differences from the HDV reference sequence (mutational distance). The

number above the graph represents the generation number. The population average is also

depicted with the number of generations on the x-axis and mean population fitness on the y-

axis. Lastly, the population diversity at a given generation is plotted as a function of genera-

tional time. Population diversity indicates the number of unique genotypes present in the pop-

ulation. Data and Python scripts for evolutionary simulations can be found on GitLab. HDV,

Hepatitis Delta Virus.

(MP4)

S5 Movie. Simulated evolution on Ligase landscape starting at genotype m. White nodes

are genotypes in the fitness landscape. Genotypes are connected by light blue edges if they dif-

fer by a single nucleotide change. The size of the blue circles depicts the relative proportion of

the simulated population at that genotype. The y-axis is relative Ligase fitness. The x-axis is

number of nucleotide differences from the HDV reference sequence (mutational distance).

The number above the graph represents the generation number. The population average is

also depicted with the number of generations on the x-axis and mean population fitness on the

y-axis. Lastly, the population diversity at a given generation is plotted as a function of genera-

tional time. Population diversity indicates the number of unique genotypes present in the pop-

ulation. Data and Python scripts for evolutionary simulations can be found on GitLab. HDV,

Hepatitis Delta Virus.

(MP4)
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S6 Movie. Simulated evolution on HDV landscape starting at genotype A. White nodes are

genotypes in the fitness landscape. Genotypes are connected by light red edges if they differ by a

single nucleotide change. The size of the red circles depicts the relative proportion of the simu-

lated population at that genotype. The y-axis is relative HDV fitness. The x-axis is number of

nucleotide differences from the HDV reference sequence (mutational distance). The number

above the graph represents the generation number. The population average is also depicted with

the number of generations on the x-axis and mean population fitness on the y-axis. Lastly, the

population diversity at a given generation is plotted as a function of generational time. Population

diversity indicates the number of unique genotypes present in the population. Data and Python

scripts for evolutionary simulations can be found on GitLab. HDV, Hepatitis Delta Virus.

(MP4)

S7 Movie. Simulated evolution on HDV landscape following 300 generations of neutral

evolution. Simulations started at genotype A. White nodes are genotypes in the fitness land-

scape. Genotypes are connected by light red edges if they differ by a single nucleotide change.

The size of the blue circles depicts the relative proportion of the simulated population at that

genotype. The y-axis is relative Ligase fitness. The x-axis is number of nucleotide differences

from the HDV reference sequence (mutational distance). The number above the graph repre-

sents the generation number. The population average is also depicted with the number of gen-

erations on the x-axis and mean population fitness on the y-axis. Lastly, the population

diversity at a given generation is plotted as a function of generational time. Population diver-

sity indicates the number of unique genotypes present in the population. Data and Python

scripts for evolutionary simulations can be found on GitLab. HDV, Hepatitis Delta Virus.

(MP4)

S8 Movie. Simulated evolution on HDV landscape following 600 generations of neutral

evolution. Simulations started at genotype A. White nodes are genotypes in the fitness land-

scape. Genotypes are connected by light red edges if they differ by a single nucleotide change.

The size of the blue circles depicts the relative proportion of the simulated population at that

genotype. The y-axis is relative Ligase fitness. The x-axis is number of nucleotide differences

from the HDV reference sequence (mutational distance). The number above the graph repre-

sents the generation number. The population average is also depicted with the number of gen-

erations on the x-axis and mean population fitness on the y-axis. Lastly, the population

diversity at a given generation is plotted as a function of generational time. Population diver-

sity indicates the number of unique genotypes present in the population. Data and Python

scripts for evolutionary simulations can be found on GitLab. HDV, Hepatitis Delta Virus.

(MP4)

S9 Movie. Simulated evolution on HDV landscape following 900 generations of neutral

evolution. Simulations started at genotype A. White nodes are genotypes in the fitness land-

scape. Genotypes are connected by light red edges if they differ by a single nucleotide change.

The size of the blue circles depicts the relative proportion of the simulated population at that

genotype. The y-axis is relative Ligase fitness. The x-axis is number of nucleotide differences

from the HDV reference sequence (mutational distance). The number above the graph repre-

sents the generation number. The population average is also depicted with the number of gen-

erations on the x-axis and mean population fitness on the y-axis. Lastly, the population

diversity at a given generation is plotted as a function of generational time. Population diver-

sity indicates the number of unique genotypes present in the population. Data and Python

scripts for evolutionary simulations can be found on GitLab. HDV, Hepatitis Delta Virus.
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S10 Movie. Simulated evolution on Ligase landscape following 300 generations of neutral

evolution. Simulations started at genotype a. White nodes are genotypes in the fitness land-

scape. Genotypes are connected by light blue edges if they differ by a single nucleotide change.

The size of the blue circles depicts the relative proportion of the simulated population at that

genotype. The y-axis is relative Ligase fitness. The x-axis is number of nucleotide differences

from the HDV reference sequence (mutational distance). The number above the graph repre-

sents the generation number. The population average is also depicted with the number of gen-

erations on the x-axis and mean population fitness on the y-axis. Lastly, the population

diversity at a given generation is plotted as a function of generational time. Population diver-

sity indicates the number of unique genotypes present in the population. Data and Python

scripts for evolutionary simulations can be found on GitLab. HDV, Hepatitis Delta Virus.
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