162 research outputs found

    Critical Evaluation of Imprinted Gene Expression by RNA–Seq: A New Perspective

    Get PDF
    In contrast to existing estimates of approximately 200 murine imprinted genes, recent work based on transcriptome sequencing uncovered parent-of-origin allelic effects at more than 1,300 loci in the developing brain and two adult brain regions, including hundreds present in only males or females. Our independent replication of the embryonic brain stage, where the majority of novel imprinted genes were discovered and the majority of previously known imprinted genes confirmed, resulted in only 12.9% concordance among the novel imprinted loci. Further analysis and pyrosequencing-based validation revealed that the vast majority of the novel reported imprinted loci are false-positives explained by technical and biological variation of the experimental approach. We show that allele-specific expression (ASE) measured with RNA–Seq is not accurately modeled with statistical methods that assume random independent sampling and that systematic error must be accounted for to enable accurate identification of imprinted expression. Application of a robust approach that accounts for these effects revealed 50 candidate genes where allelic bias was predicted to be parent-of-origin–dependent. However, 11 independent validation attempts through a range of allelic expression biases confirmed only 6 of these novel cases. The results emphasize the importance of independent validation and suggest that the number of imprinted genes is much closer to the initial estimates

    MAP3K19 regulatory variation in populations with African ancestry may increase COVID-19 severity

    Get PDF
    To identify ancestry-linked genetic risk variants associated with COVID-19 hospitalization, we performed an integrative analysis of two genome-wide association studies and resolved four single nucleotide polymorphisms more frequent in COVID-19-hospitalized patients with non-European ancestry. Among them, the COVID-19 risk SNP rs16831827 shows the largest difference in minor allele frequency (MAF) between populations with African and European ancestry and also shows higher MAF in hospitalized COVID-19 patients among cohorts of mixed ancestry (odds ratio [OR] = 1.20, 95% CI: 1.10-1.30) and entirely African ancestry (OR = 1.30, 95% CI: 1.02-1.67). rs16831827 is an expression quantitative trait locus of MAP3K19. MAP3K19 expression is induced during ciliogenesis and most abundant in ciliated tissues including lungs. Single-cell RNA sequencing analyses revealed that MAP3K19 is highly expressed in multiple ciliated cell types. As rs16831827∗T is associated with reduced MAP3K19 expression, it may increase the risk of severe COVID-19 by reducing MAP3K19 expression

    Adhesion Is Prerequisite, But Alone Insufficient, to Elicit Stem Cell Pluripotency

    Get PDF
    Primitive mammalian neural stem cells (NSCs), arising during the earliest stages of embryogenesis, possess pluripotency in embryo chimera assays in contrast to definitive NSCs found in the adult. We hypothesized that adhesive differences determine the association of stem cells with embryonic cells in chimera assays and hence their ability to contribute to later tissues. We show that primitive NSCs and definitive NSCs possess adhesive differences, resulting from differential cadherin expression, that lead to a double dissociation in outcomes after introduction into the early- versus midgestation embryo. Primitive NSCs are able to sort with the cells of the inner cell mass and thus contribute to early embryogenesis, in contrast to definitive NSCs, which cannot. Conversely, primitive NSCs sort away from cells of the embryonic day 9.5 telencephalon and are unable to contribute to neural tissues at midembryogenesis, in contrast to definitive NSCs, which can. Overcoming these adhesive differences by E-cadherin overexpression allows some definitive NSCs to integrate into the inner cell mass but is insufficient to allow them to contribute to later development. These adhesive differences suggest an evolving compartmentalization in multipotent NSCs during development and serve to illustrate the importance of cell–cell association for revealing cellular contribution

    Profiling allele-specific gene expression in brains from individuals with autism spectrum disorder reveals preferential minor allele usage.

    Get PDF
    One fundamental but understudied mechanism of gene regulation in disease is allele-specific expression (ASE), the preferential expression of one allele. We leveraged RNA-sequencing data from human brain to assess ASE in autism spectrum disorder (ASD). When ASE is observed in ASD, the allele with lower population frequency (minor allele) is preferentially more highly expressed than the major allele, opposite to the canonical pattern. Importantly, genes showing ASE in ASD are enriched in those downregulated in ASD postmortem brains and in genes harboring de novo mutations in ASD. Two regions, 14q32 and 15q11, containing all known orphan C/D box small nucleolar RNAs (snoRNAs), are particularly enriched in shifts to higher minor allele expression. We demonstrate that this allele shifting enhances snoRNA-targeted splicing changes in ASD-related target genes in idiopathic ASD and 15q11-q13 duplication syndrome. Together, these results implicate allelic imbalance and dysregulation of orphan C/D box snoRNAs in ASD pathogenesis

    Ontogeny, conservation and functional significance of maternally inherited DNA methylation at two classes of non-imprinted genes

    Get PDF
    A functional role for DNA methylation has been well-established at imprinted loci, which inherit methylation uniparentally, most commonly from the mother via the oocyte. Many CpG islands not associated with imprinting also inherit methylation from the oocyte, although the functional significance of this, and the common features of the genes affected, are unclear. We identify two major subclasses of genes associated with these gametic differentially methylated regions (gDMRs), namely those important for brain and for testis function. The gDMRs at these genes retain the methylation acquired in the oocyte through preimplantation development, but become fully methylated postimplantation by de novo methylation of the paternal allele. Each gene class displays unique features, with the gDMR located at the promoter of the testis genes but intragenically for the brain genes. Significantly, demethylation using knockout, knockdown or pharmacological approaches in mouse stem cells and fibroblasts resulted in transcriptional derepression of the testis genes, indicating that they may be affected by environmental exposures, in either mother or offspring, that cause demethylation. Features of the brain gene group suggest that they might represent a pool from which many imprinted genes have evolved. The locations of the gDMRs, as well as methylation levels and repression effects, were also conserved in human cells

    Natural epigenetic polymorphisms lead to intraspecific variation in Arabidopsis gene imprinting

    Get PDF
    Imprinted gene expression occurs during seed development in plants and is associated with differential DNA methylation of parental alleles, particularly at proximal transposable elements (TEs). Imprinting variability could contribute to observed parent-of-origin effects on seed development. We investigated intraspecific variation in imprinting, coupled with analysis of DNA methylation and small RNAs, among three Arabidopsis strains with diverse seed phenotypes. The majority of imprinted genes were parentally biased in the same manner among all strains. However, we identified several examples of allele-specific imprinting correlated with intraspecific epigenetic variation at a TE. We successfully predicted imprinting in additional strains based on methylation variability. We conclude that there is standing variation in imprinting even in recently diverged genotypes due to intraspecific epiallelic variation. Our data demonstrate that epiallelic variation and genomic imprinting intersect to produce novel gene expression patterns in seeds. - See more at: http://elifesciences.org/content/3/e03198#sthash.B3zTCoEp.dpufNational Science Foundation (U.S.) (MCB 1121952)Pew Charitable Trusts (Pew Scholars Program in the Biomedical Sciences)National Science Foundation (U.S.) (Graduate Research Fellowship

    Ageing in personal and social immunity: do immune traits senesce at the same rate?

    Get PDF
    1) How much should an individual invest in immunity as it grows older? Immunity is costly and its value is likely to change across an organism’s lifespan. A limited number of studies have focused on how personal immune investment changes with age in insects, but we do not know how social immunity, immune responses that protect kin, changes across lifespan, or how resources are divided between these two arms of the immune response. 2) In this study both personal and social immune function are considered in the burying beetle, Nicrophorus vespilloides. We show that personal immune function declines (phenoloxidase levels) or is maintained (defensin expression) across lifespan in non-breeding beetles but is maintained (phenoloxidase levels) or even upregulated (defensin expression) in breeding individuals. In contrast, social immunity increases in breeding burying beetles up to middle age, before decreasing in old age. Social immunity is not affected by a wounding challenge across lifespan, whereas personal immunity, through PO, is upregulated following wounding to a similar extent across lifespan. 3) Personal immune function may be prioritised in younger individuals in order to ensure survival until reproductive maturity. If not breeding, this may then drop off in later life as state declines. As burying beetles are ephemeral breeders, breeding opportunities in later life may be rare. When allowed to breed beetles may therefore invest heavily in ‘staying alive’ in order to complete what could potentially be their final reproductive opportunity. As parental care is important for the survival and growth of offspring in this genus, staying alive to provide care behaviours will clearly have fitness payoffs. 4) This study shows that all immune traits do not senesce at the same rate. In fact, the patterns observed depend upon the immune traits measured and the breeding status of the individual

    Mapping the mouse Allelome reveals tissue specific regulation of allelic expression

    Get PDF
    To determine the dynamics of allelic-specific expression during mouse development, we analyzed RNA-seq data from 23 F1 tissues from different developmental stages, including 19 female tissues allowing X chromosome inactivation (XCI) escapers to also be detected. We demonstrate that allelic expression arising from genetic or epigenetic differences is highly tissue-specific. We find that tissue-specific strain-biased gene expression may be regulated by tissue-specific enhancers or by post-transcriptional differences in stability between the alleles. We also find that escape from X-inactivation is tissue-specific, with leg muscle showing an unexpectedly high rate of XCI escapers. By surveying a range of tissues during development, and performing extensive validation, we are able to provide a high confidence list of mouse imprinted genes including 18 novel genes. This shows that cluster size varies dynamically during development and can be substantially larger than previously thought, with the Igf2r cluster extending over 10 Mb in placenta
    • …
    corecore