25 research outputs found
Investigating Water Ice in Persistently Shadowed Craters in Mercury\u27s North Polar Region
Through a combination of Earth-based radar observations, available spacecraft neutron spectrometer and laser altimeter data, and thermal modeling, it has previously been suggested that the planet Mercury hosts extensive water ice deposits in its polar regions. This study concentrates on observations of the permanently shadowed craters of Mercury’s north polar region, where water ice is expected. To examine the interior of craters that host radar-bright material, images from the Wide Angle Camera (WAC) aboard the Mercury Surface, Space Environment, Geochemistry, and Ranging (MESSENGER) spacecraft were processed using Integrated Software for Imagers and Spectrometers (ISIS) and stretched on a grayscale to expose reflectivity differences and surface features. This process revealed intriguing dark material within 53.2% of the individual craters studied in the region 75º N and northward, which is interpreted to be sublimation lags. The relationships between visible reflectivity material, radar-bright deposits, and regions of persistent shadow were mapped for these craters. Reflectivity-light material was revealed in the Prokofiev and Kandinsky craters (4.2%), indicating exposed water ice deposits. The remaining craters either did not reveal dark or light material (29.8%) or did not return images of high enough quality for analysis (12.8%). Additionally, the area of 84º N and northward was analyzed on a regional scale. Areas of persistent shadow were mapped and then compared to radar data to both qualify and quantify the relationship between shadowed areas and radar-bright features. In the study area, ~82% of the Harmon et al. (2011) radar-bright features aligned with the mapped areas of persistent shadow. The results of this study indicate that water ice stably resides in the persistently shadowed craters on Mercury’s north polar region and is typically insulated by a reflectivity-dark lag deposit
The Roughness Properties of Small Ice-Bearing Craters at the South Pole of the Moon: Implications for Accessing Fresh Water Ice in Future Surface Operations
The lunar poles provide a fascinating thermal environment capable of cold-trapping water ice on geologic timescales [1]. While there have been many observations indicating the presence of water ice at the lunar surface [e.g., 24], it is still not clear when this ice was delivered to the Moon. The timing of volatile dep-osition provides important constraints on the origin of lunar ice because different delivery mechanisms have been active at different times throughout lunar history. We previously found that some small (<10 km) cra-ters at the south pole of the Moon have morphologies suggestive of relatively young ages, on the basis of crisp crater rims [5]. These craters are too small to date with robust cratering statistics [5], but the possibility of ice in young craters is intriguing because it suggests that there is some recent and perhaps ongoing mechanism that is delivering or redistributing water to polar cold traps. Therefore, understanding if these small, ice-bear-ing craters are indeed young is essential in understand-ing the age and source of volatiles on the Moon. Here we take a new approach to understand the ages of these small polar cold traps: analyzing the roughness properties of small ice-bearing craters. It is well under-stood that impact crater properties (e.g., morphology, rock abundance, and roughness) evolve with time due to a variety of geologic and space-weathering processes [611]. Topographic roughness is a measurement of the local deviation from the mean topography, providing a measurement of surface texture, and is a powerful tool for evaluating surface evolution over geologic time [e.g., 1114]. In this study we analyze the roughness of southern lunar craters (40S90S) from all geologic eras, and determine how the roughness of small (<10 km) ice-bearing craters compare. We discuss the implications of the ages of ice-bearing south polar craters, and potential strategies for accessing fresh ice on the Moon
Distribution of Surface Water Ice on the Moon: An Analysis of Host Crater Ages Provides Insight into the Ages and Sources of Ice at the Lunar South Pole
No abstract availabl
New Evidence for Surface Water Ice in Small-Scale Cold Traps and in Three Large Craters at the North Polar Region of Mercury from the Mercury Laser Altimeter
The Mercury Laser Altimeter (MLA) measured surface reflectance, r(sub s), at 1064 nm. On Mercury, most water-ice deposits have anomalously low r(sub s) values indicative of an insulating layer beneath which ice is buried. Previous detections of surface water ice (without an insulating layer) were limited to seven craters. Here we map r(sub s) in three additional permanently shadowed craters that host radar-bright deposits. Each crater has a mean r(sub s) value greater than 0.3, suggesting that water ice is exposed at the surface without an overlying insulating layer, bringing the total to ten large craters that host exposed water ice at Mercurys north pole. We also identify small-scale cold traps (less than 5 km in diameter) where r(sub s) greater than 0.3 and permanent shadows have biannual maximum surface temperatures less than 100 K. We suggest that a substantial amount of Mercury's water ice is not confined to large craters, but exists within micro-cold traps, within rough patches and inter-crater terrain
GRAIL-identified gravity anomalies in Oceanus Procellarum:Insight into subsurface impact and magmatic structures on the Moon
Four, quasi-circular, positive Bouguer gravity anomalies (PBGAs) that are similar in diameter (~90–190 km) and gravitational amplitude (>140 mGal contrast) are identified within the central Oceanus Procellarum region of the Moon. These spatially associated PBGAs are located south of Aristarchus Plateau, north of Flamsteed crater, and two are within the Marius Hills volcanic complex (north and south). Each is characterized by distinct surface geologic features suggestive of ancient impact craters and/or volcanic/plutonic activity. Here, we combine geologic analyses with forward modeling of high-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission in order to constrain the subsurface structures that contribute to these four PBGAs. The GRAIL data presented here, at spherical harmonic degrees 6–660, permit higher resolution analyses of these anomalies than previously reported, and reveal new information about subsurface structures. Specifically, we find that the amplitudes of the four PBGAs cannot be explained solely by mare-flooded craters, as suggested in previous work; an additional density contrast is required to explain the high-amplitude of the PBGAs. For Northern Flamsteed (190 km diameter), the additional density contrast may be provided by impact-related mantle uplift. If the local crust has a density ~2800 kg/m3, then ~7 km of uplift is required for this anomaly, although less uplift is required if the local crust has a lower mean density of ~2500 kg/m3. For the Northern and Southern Marius Hills anomalies, the additional density contrast is consistent with the presence of a crustal complex of vertical dikes that occupies up to ~50% of the regionally thin crust. The structure of Southern Aristarchus Plateau (90 km diameter), an anomaly with crater-related topographic structures, remains ambiguous. Based on the relatively small size of the anomaly, we do not favor mantle uplift; however, understanding mantle response in a region of especially thin crust needs to be better resolved. It is more likely that this anomaly is due to subsurface magmatic material given the abundance of volcanic material in the surrounding region. Overall, the four PBGAs analyzed here are important in understanding the impact and volcanic/plutonic history of the Moon, specifically in a region of thin crust and elevated temperatures characteristic of the Procellarum KREEP Terrane
Investigating Diurnal Changes in the Normal Albedo of the Lunar Surface at 1064 nm: A New Analysis with the Lunar Orbiter Laser Altimeter
The thermal environment of the lunar surface is extreme. At the equator, temperatures drop ~300 K between local noon and night. Laboratory studies demonstrate that minerals common to the lunar surface (e.g.,pyroxene, olivine) show spectral changes with respect to temperature in near infrared wavelengths. Over temperature changes equivalent to the lunar thermal environment (T 300K), the reflectance of pure pyroxene samples can vary by a factor of two
Comparison of Areas in Shadow from Imaging and Altimetry in the North Polar Region of Mercury and Implications for Polar Ice Deposits
Earth-based radar observations and results from the MESSENGER mission have provided strong evidence that permanently shadowed regions near Mercury's poles host deposits of water ice. MESSENGER's complete orbital image and topographic datasets enable Mercury's surface to be observed and modeled under an extensive range of illumination conditions. The shadowed regions of Mercury's north polar region from 65 deg N to 90 deg N were mapped by analyzing Mercury Dual Imaging System (MDIS) images and by modeling illumination with Mercury Laser Altimeter (MLA) topographic data. The two independent methods produced strong agreement in identifying shadowed areas. All large radar-bright deposits, those hosted within impact craters greater than or equal to 6 km in diameter, collocate with regions of shadow identified by both methods. However, only approximately 46% of the persistently shadowed areas determined from images and approximately 43% of the permanently shadowed areas derived from altimetry host radar-bright materials. Some sizable regions of shadow that do not host radar-bright deposits experience thermal conditions similar to those that do. The shadowed craters that lack radar-bright materials show a relation with longitude that is not related to the thermal environment, suggesting that the Earth-based radar observations of these locations may have been limited by viewing geometry, but it is also possible that water ice in these locations is insulated by anomalously thick lag deposits or that these shadowed regions do not host water ice
The ETNA mission concept: Assessing the habitability of an active ocean world
Enceladus is an icy world with potentially habitable conditions, as suggested by the coincident presence of a subsurface ocean, an active energy source due to water-rock interactions, and the basic chemical ingredients necessary for terrestrial life. Among all ocean worlds in our Solar System, Enceladus is the only active body that provides direct access to its ocean through the ongoing expulsion of subsurface material from erupting plumes. Here we present the Enceladus Touchdown aNalyzing Astrobiology (ETNA) mission, a concept designed during the 2019 Caltech Space Challenge. ETNA’s goals are to determine whether Enceladus provides habitable conditions and what (pre-) biotic signatures characterize Enceladus. ETNA would sample and analyze expelled plume materials at the South Polar Terrain (SPT) during plume fly-throughs and landed operations. An orbiter includes an ultraviolet imaging spectrometer, an optical camera, and radio science and a landed laboratory includes an ion microscope and mass spectrometer suite, temperature sensors, and an optical camera, plus three seismic geophones deployed during landing. The nominal mission timeline is 2 years in the Saturnian system and ∼1 year in Enceladus orbit with landed operations. The detailed exploration of Enceladus’ plumes and SPT would achieve broad and transformational Solar System science related to the building of habitable worlds and the presence of life elsewhere. The nature of such a mission is particularly timely and relevant given the recently released Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023–2032, which includes a priority recommendation for the dedicated exploration of Enceladus and its habitable potential
Recommended from our members
Imaging Mercury's polar deposits during MESSENGER's low‐altitude campaign
Images obtained during the low‐altitude campaign in the final year of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission provide the highest‐spatial‐resolution views of Mercury's polar deposits. Images for distinct areas of permanent shadow within 35 north polar craters were successfully captured during the campaign. All of these regions of permanent shadow were found to have low‐reflectance surfaces with well‐defined boundaries. Additionally, brightness variations across the deposits correlate with variations in the biannual maximum surface temperature across the permanently shadowed regions, supporting the conclusion that multiple volatile organic compounds are contained in Mercury's polar deposits, in addition to water ice. A recent large impact event or ongoing bombardment by micrometeoroids could deliver water as well as many volatile organic compounds to Mercury. Either scenario is consistent with the distinctive reflectance properties and well‐defined boundaries of Mercury's polar deposits and the presence of volatiles in all available cold traps
Mapping genetic variations to three- dimensional protein structures to enhance variant interpretation: a proposed framework
The translation of personal genomics to precision medicine depends on the accurate interpretation of the multitude of genetic variants observed for each individual. However, even when genetic variants are predicted to modify a protein, their functional implications may be unclear. Many diseases are caused by genetic variants affecting important protein features, such as enzyme active sites or interaction interfaces. The scientific community has catalogued millions of genetic variants in genomic databases and thousands of protein structures in the Protein Data Bank. Mapping mutations onto three-dimensional (3D) structures enables atomic-level analyses of protein positions that may be important for the stability or formation of interactions; these may explain the effect of mutations and in some cases even open a path for targeted drug development. To accelerate progress in the integration of these data types, we held a two-day Gene Variation to 3D (GVto3D) workshop to report on the latest advances and to discuss unmet needs. The overarching goal of the workshop was to address the question: what can be done together as a community to advance the integration of genetic variants and 3D protein structures that could not be done by a single investigator or laboratory? Here we describe the workshop outcomes, review the state of the field, and propose the development of a framework with which to promote progress in this arena. The framework will include a set of standard formats, common ontologies, a common application programming interface to enable interoperation of the resources, and a Tool Registry to make it easy to find and apply the tools to specific analysis problems. Interoperability will enable integration of diverse data sources and tools and collaborative development of variant effect prediction methods