103 research outputs found

    Cardiovascular, respiratory, gastrointestinal and behavioral effects of intravenous lidocaine in healthy, conscious horses and evaluation of the relationship with lidocaine and monoethylglycinexylidide serum concentrations

    Get PDF
    This study aimed to evaluate the relationship between the serum concentrations of lidocaine/ monoethylglycinexylidide (MEGX) and their effects on several systems in horses. Five healthy, conscious horses received a two-hour placebo intravenous infusion followed by a two-hour lidocaine infusion (bolus of 1.3 mg/kg over ten minutes followed by a continuous rate infusion of 0.05 mg/kg/min). Lidocaine and MEGX serum concentrations were sampled every ten to fifteen minutes during the experiment, and the presence of muscle fasciculations and loss of balance as well as the respiratory, digestive and cardiovascular systems of the five horses were evaluated by means of different non-invasive methods. During the lidocaine infusion, the mean (f SD) lidocaine and MEGX concentrations were respectively 768.88 +/- 93.32ng/ml and 163.08 +/- 108.98 ng/ml. The infusion of lidocaine significantly influenced the presence of fasciculations, caused a statistically but non-clinically significant decrease of systolic and diastolic blood pressures, which were both correlated with lidocaine and MEGX serum concentrations, and it increased the duodenal contractions frequency, which was correlated with the serum lidocaine concentration. In this study, mild hypotensive and prokinetic effects of short-term lidocaine infusion were observed

    Genetic parameters for somatic cell score according to udder infection status in Valle del Belice dairy sheep and impact of imperfect diagnosis of infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Somatic cell score (SCS) has been promoted as a selection criterion to improve mastitis resistance. However, SCS from healthy and infected animals may be considered as separate traits. Moreover, imperfect sensitivity and specificity could influence animals' classification and impact on estimated variance components. This study was aimed at: (1) estimating the heritability of bacteria negative SCS, bacteria positive SCS, and infection status, (2) estimating phenotypic and genetic correlations between bacteria negative and bacteria positive SCS, and the genetic correlation between bacteria negative SCS and infection status, and (3) evaluating the impact of imperfect diagnosis of infection on variance component estimates.</p> <p>Methods</p> <p>Data on SCS and udder infection status for 1,120 ewes were collected from four Valle del Belice flocks. The pedigree file included 1,603 animals. The SCS dataset was split according to whether animals were infected or not at the time of sampling. A repeatability test-day animal model was used to estimate genetic parameters for SCS traits and the heritability of infection status. The genetic correlation between bacteria negative SCS and infection status was estimated using an MCMC threshold model, implemented by Gibbs Sampling.</p> <p>Results</p> <p>The heritability was 0.10 for bacteria negative SCS, 0.03 for bacteria positive SCS, and 0.09 for infection status, on the liability scale. The genetic correlation between bacteria negative and bacteria positive SCS was 0.62, suggesting that they may be genetically different traits. The genetic correlation between bacteria negative SCS and infection status was 0.51. We demonstrate that imperfect diagnosis of infection leads to underestimation of differences between bacteria negative and bacteria positive SCS, and we derive formulae to predict impacts on estimated genetic parameters.</p> <p>Conclusions</p> <p>The results suggest that bacteria negative and bacteria positive SCS are genetically different traits. A positive genetic correlation between bacteria negative SCS and liability to infection was found, suggesting that the approach of selecting animals for decreased SCS should help to reduce mastitis prevalence. However, the results show that imperfect diagnosis of infection has an impact on estimated genetic parameters, which may reduce the efficiency of selection strategies aiming at distinguishing between bacteria negative and bacteria positive SCS.</p

    Bistability and Bacterial Infections

    Get PDF
    Bacterial infections occur when the natural host defenses are overwhelmed by invading bacteria. The main component of the host defense is impaired when neutrophil count or function is too low, putting the host at great risk of developing an acute infection. In people with intact immune systems, neutrophil count increases during bacterial infection. However, there are two important clinical cases in which they remain constant: a) in patients with neutropenic-associated conditions, such as those undergoing chemotherapy at the nadir (the minimum clinically observable neutrophil level); b) in ex vivo examination of the patient's neutrophil bactericidal activity. Here we study bacterial population dynamics under fixed neutrophil levels by mathematical modelling. We show that under reasonable biological assumptions, there are only two possible scenarios: 1) Bacterial behavior is monostable: it always converges to a stable equilibrium of bacterial concentration which only depends, in a gradual manner, on the neutrophil level (and not on the initial bacterial level). We call such a behavior type I dynamics. 2) The bacterial dynamics is bistable for some range of neutrophil levels. We call such a behavior type II dynamics. In the bistable case (type II), one equilibrium corresponds to a healthy state whereas the other corresponds to a fulminant bacterial infection. We demonstrate that published data of in vitro Staphylococcus epidermidis bactericidal experiments are inconsistent with both the type I dynamics and the commonly used linear model and are consistent with type II dynamics. We argue that type II dynamics is a plausible mechanism for the development of a fulminant infection

    The Glyceraldehyde-3-Phosphate Dehydrogenase and the Small GTPase Rab 2 Are Crucial for Brucella Replication

    Get PDF
    The intracellular pathogen Brucella abortus survives and replicates inside host cells within an endoplasmic reticulum (ER)-derived replicative organelle named the “Brucella-containing vacuole” (BCV). Here, we developed a subcellular fractionation method to isolate BCVs and characterize for the first time the protein composition of its replicative niche. After identification of BCV membrane proteins by 2 dimensional (2D) gel electrophoresis and mass spectrometry, we focused on two eukaryotic proteins: the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the small GTPase Rab 2 recruited to the vacuolar membrane of Brucella. These proteins were previously described to localize on vesicular and tubular clusters (VTC) and to regulate the VTC membrane traffic between the endoplasmic reticulum (ER) and the Golgi. Inhibition of either GAPDH or Rab 2 expression by small interfering RNA strongly inhibited B. abortus replication. Consistent with this result, inhibition of other partners of GAPDH and Rab 2, such as COPI and PKC ι, reduced B. abortus replication. Furthermore, blockage of Rab 2 GTPase in a GDP-locked form also inhibited B. abortus replication. Bacteria did not fuse with the ER and instead remained in lysosomal-associated membrane vacuoles. These results reveal an essential role for GAPDH and the small GTPase Rab 2 in B. abortus virulence within host cells

    Higher sensitivity of Adamts12-deficient mice to tumor growth and angiogenesis.

    Full text link
    ADAMTS (a disintegrin and metalloproteinase domain with thrombospondin motifs) constitute a family of endopeptidases related to matrix metalloproteinases. These proteases have been largely implicated in tissue remodeling and angiogenesis associated with physiological and pathological processes. To elucidate the in vivo functions of ADAMTS-12, we have generated a knockout mouse strain (Adamts12−/−) in which Adamts12 gene was deleted. The mutant mice had normal gestations and no apparent defects in growth, life span and fertility. By applying three different in vivo models of angiogenesis (malignant keratinocyte transplantation, Matrigel plug and aortic ring assays) to Adamts12−/− mice, we provide evidence for a protective effect of this host enzyme toward angiogenesis and cancer progression. In the absence of Adamts-12, both the angiogenic response and tumor invasion into host tissue were increased. Complementing results were obtained by using medium conditioned by cells overexpressing human ADAMTS-12, which inhibited vessel outgrowth in the aortic ring assay. This angioinhibitory effect of ADAMTS-12 was independent of its enzymatic activity as a mutated inactive form of the enzyme was similarly efficient in inhibiting endothelial cell sprouting in the aortic ring assay than the wild-type form. Altogether, our results show that ADAMTS-12 displays antiangiogenic properties and protect the host toward tumor progression

    Global Analysis of Quorum Sensing Targets in the Intracellular Pathogen Brucella melitensis 16 M

    Get PDF
    Many pathogenic bacteria use a regulatory process termed quorum sensing (QS) to produce and detect small diffusible molecules to synchronize gene expression within a population. In Gram-negative bacteria, the detection of, and response to, these molecules depends on transcriptional regulators belonging to the LuxR family. Such a system has been discovered in the intracellular pathogen Brucella melitensis, a Gram-negative bacterium responsible for brucellosis, a worldwide zoonosis that remains a serious public health concern in countries were the disease is endemic. Genes encoding two LuxR-type regulators, VjbR and BabR, have been identified in the genome of B. melitensis 16 M. A DeltavjbR mutant is highly attenuated in all experimental models of infection tested, suggesting a crucial role for QS in the virulence of Brucella. At present, no function has been attributed to BabR. The experiments described in this report indicate that 5% of the genes in the B. melitensis 16 M genome are regulated by VjbR and/or BabR, suggesting that QS is a global regulatory system in this bacterium. The overlap between BabR and VjbR targets suggest a cross-talk between these two regulators. Our results also demonstrate that VjbR and BabR regulate many genes and/or proteins involved in stress response, metabolism, and virulence, including those potentially involved in the adaptation of Brucella to the oxidative, pH, and nutritional stresses encountered within the host. These findings highlight the involvement of QS as a major regulatory system in Brucella and lead us to suggest that this regulatory system could participate in the spatial and sequential adaptation of Brucella strains to the host environment.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Expression profile of genes associated with mastitis in dairy cattle

    Get PDF
    In order to characterize the expression of genes associated with immune response mechanisms to mastitis, we quantified the relative expression of the IL-2, IL-4, IL-6, IL-8, IL-10, IFN-γ and TNF- α genes in milk cells of healthy cows and cows with clinical mastitis. Total RNA was extracted from milk cells of six Black and White Holstein (BW) cows and six Gyr cows, including three animals with and three without mastitis per breed. Gene expression was analyzed by real-time PCR. IL-10 gene expression was higher in the group of BW and Gyr cows with mastitis compared to animals free of infection from both breeds (p < 0.05). It was also higher in BW Holstein animals with clinical mastitis (p < 0.001), but it was not significant when Gyr cows with and without mastitis were compared (0.05 < p < 0.10). Among healthy cows, BW Holstein animals tended to present a higher expression of all genes studied, with a significant difference for the IL-2 and IFN- γ genes (p < 0.001). For animals with mastitis no significant difference in gene expression was observed between the two breeds. These findings suggest that animals with mastitis develop a preferentially cell-mediated immune response. Further studies including larger samples are necessary to better characterize the gene expression profile in cows with mastitis
    corecore