46 research outputs found

    Polynyas as a Possible Source for Enigmatic Bennett Island Atmospheric Plumes

    Get PDF

    Tracking the provenance of Greenland-sourced, Holocene aged, individual sand-sized ice-rafted debris using the Pb-isotope compositions of feldspars and 40Ar/39Ar ages of hornblendes

    Get PDF
    The provenance of sand-sized ice-rafted debris (IRD) sourced from Greenland is currently difficult to determine. Such knowledge, if it could be ascertained with a high degree of certainty, could be applied to the Greenland-proximal marine records to improve both our understanding of modern-day spatial patterns of iceberg rafting and the past history of the Greenland Ice Sheet (GIS). Recent studies have highlighted the utility of the Pb-isotope composition of individual sand-sized feldspars and the 40Ar/39Ar ages of individual sand-sized hornblendes in this regard. However, before any such provenance toolkit can be applied to the palaeo-record, it is necessary first to determine whether this approach can be used to track the sources of known recent Greenland-proximal IRD deposition. To this end we present new records of the Pb-isotope composition and the 40Ar/39Ar ages of individual sand-sized grains of feldspars and hornblendes, respectively, from modern Greenland glacifluvial and fjord sands and Holocene to modern Greenland-proximal marine sediments. These new data demonstrate that sand-sized feldspars and hornblendes glacially eroded by the GIS exhibit distinct intra- and inter-tectonic terrane differences in their Pb-isotope compositions and ages and that these differences are clearly expressed in the geochemistry and geochronology of sand-sized IRD deposited in marine sediments around Greenland. Although overlap exists between some Greenland-proximal IRD ‘source fields’ defined by these data, our approach has the potential to both better understand spatial patterns of Greenland-derived IRD in the modern day as well as during past episodes of iceberg calving

    Reconstructing the origin and trajectory of drifting Arctic sea ice

    Get PDF
    Recent studies have indicated that drifting Arctic sea ice plays an important role in the redistribution of sediments and contaminants. Here we present a method to reconstruct the backward trajectory of sea ice from its sampling location in the Eurasian Arctic to its possible site of origin on the shelf, based on historical drift data from the International Arctic Buoy Program. This method is verified by showing that origins derived from the backward trajectories are generally consistent with other indicators, such as comparison of the predicted backward trajectories with known buoy drifts and matching the clay mineralogy of sediments sampled from the sea ice with that of the seafloor in the predicted shelf source regions. The trajectories are then used to identify regions where sediment‐laden ice is exported to the Transpolar Drift Stream: from the New Siberian Islands and the Central Kara Plateau. Calculation of forward trajectories shows that the Kara Sea is a major contributor of ice to the Barents Sea and the southern limb of the Transpolar Drift Stream

    Holocene Cyclic Records of Ice-Rafted Debris and Sea Ice Variations on the East Greenland and Northwest Iceland Margins

    Get PDF
    The dynamics of the Greenland Ice Sheet and drift of sea ice from the Arctic Ocean reaching Denmark Strait are poorly constrained. We present data on the provenance of Fe oxide detrital grains from two cores in the Denmark Strait area and compare the Fe grain source data with other environmental proxies in order to document the variations and potential periodicities in ice-rafted debris delivery during the Holocene. Based on their Fe grain geochemistry, the sediments can be traced to East Greenland sources and to more distal sites around the Arctic Basin. On the Holocene time scales of the two cores, sea ice biomarker (IP25) data, and quartz weight percent reveal positive associations with T°C and inverse associations with biogenic carbonate wt%. Trends in the data were obtained from Singular Spectrum Analysis (SSA), and residuals were tested for cyclicity. Trends on the environmental proxies explained between 15 and 90% of the variance. At both sites the primary Fe grain sources were from Greenland, but significant contributions were also noted from Banks Island and Svalbard. There is a prominent cyclicity of 800 yrs as well as other less prominent cycles for both Greenland and arctic sources. The Fe grain sources from Greenland and the circum-Arctic Ocean are in synchronization, suggesting that the forcings for these cycles are regional and not local ice sheet instabilities

    Transport of radionuclides by sea-ice and dense-water formed in western Kara Sea flaw leads

    Get PDF
    A transport assessment of particle-bound and dissolved artificial radionuclides (137Cs and 239,240Pu) by sea-ice and dense-water formed in western Kara Sea flaw leads close to the Novaya Zemlya dumping sites is presented in this study. We both performed a “best estimate” based on available data, and a “maximum assessment” relying on simulated constant releases of 1 TBq 137Cs and 239,240Pu from individual dumping bays. The estimates are based on a combination of (i) the content of particulate matter in sea-ice; (ii) analytical data and numerical simulations of radionuclide concentrations in shelf surface deposits, suspended particulate matter (SPM), and the dissolved phase; and (iii) estimates of lead-ice and dense-water formation rates as well as modeling results of local ice drift pathways. In the “best estimate” case, 2.90 GBq 137Cs and 0.51 GBq 239,240Pu attached to sea-ice sediments can be exported from the lead areas toward the central Arctic basin. The radionuclide burden of the annually formed dense lead water in the “best estimate” amounts to 4.68 TBq 137Cs and 0.014 TBq 239,240Pu. In the “maximum assessment”, potential export-rates of ice-particle bound 137Cs and 239,240Pu toward the central Arctic would amount to 0.64 and 0.16 TBq, respectively. As much as ≈900 TBq 137Cs and ≈6.75 TBq 239,240Pu could be annually taken up by 34.75 dense-water rejected in the lead area. Assuming the (unlikely) instantaneous release of the total 137Cs and 239,240Pu inventories (≈1 PBq and 10 TBq, respectively) from the Novaya Zemlya dumping sites into the dissolved phase, the dense lead water locally formed during one winter season could take up ≈90% of the Cs and ≈68% of the Pu released
    corecore