199 research outputs found

    Demersal and epibenthic communities of sedimentary habitats in the Avilés Canyon System, Cantabrian Sea (NE Atlantic)

    Get PDF
    The aim of this study was to describe the epibenthic and demersal communities of the Avilés Canyon System (ACS) in relation to the environmental variables that characterize their biotope. ACS (Cantabrian Sea, NE Atlantic) was recently included in the Natura 2000 network as a Site of Community Importance (SCI). Data of faunal biomass derived from 6 surveys carried out using beam trawl and otter trawls in 2009 and 2010 within INDEMARES and ERDEM projects. Data were divided into two groups to obtain information about the two ecological compartments: benthic and demersal. The total number of species used in this analysis ascended to 116 in the case of benthic organisms and 110 in the case of demersal. Hierarchical clustering analysis was applied to obtain groups of samples similar in terms of species composition for the two ecological components. Depth was the main discriminating factor for grouping hauls, showing high consistency of bathymetric range independently from the compartment examined. Six groups were identified by depth as follows: medium shelf (∼100–200 m), external shelf (∼150–300m), shelf break (∼300–400 m), upper-slope (∼500–700 m), upper middle-slope (∼700–1100 m), and lower-middle-slope (1200–1500 m). SIMPER analysis on biomass values was performed to determine the structure of the faunal assemblages observed for each group in both compartments. Using biomass values for the analysis allowed for the exploration of groups playing important roles in ecosystem functioning and energy fluxes taking place on the sedimentary bottom of this SCI. Finally, CCA analysis revealed that the main environmental drivers were depth, broad scale bathymetric position index (BPI), near-bottom salinity, sedimentary type, and dynamics related variables (Q50 phy and So). This study gives an inventory of the soft bottom assemblages along a very wide depth range (100–1500 m) inside a SCI, linking both epibenthic and demersal communities with the biotope preferences. This study contributes to fundamental knowledge on soft-bottom communities as a pre-requisite, necessary for the next steps in terms of management framework in the SCI

    Geomorphology of the Avilés Canyon System, Cantabrian Sea (BayofBiscay)

    Get PDF
    The Avilés Canyon System (ACS) is a complex, structurally-controlled canyon and valley system constituted by three main canyons of different morphostructural character. They are, from east to west: La Gaviera Canyon, El Corbiro Canyon and Avilés Canyon. In addition to this ACS, a new canyon has been surveyed: Navia Canyon. We present for the first time a high resolution multibeam map showing with great detail the morphological and structural complexity of this segment of the Cantabrian margin. ACS presents a tectonic imprint marked by NW-SE, NNE-SSW and E-W structures. The morphology of their reaches as well as their single mouth, in addition to some rock dredges in their major valleys, demonstrates active down-slope flushing. The continental shelf shows a flat, uniform slope with local and well defined rock outcrops south of Aviles Canyon head. Sedimentary zones are limited, showing thin unconsolidated sedimentary cover. Strong continental margin water dynamics avoid thicker sediment deposition, being littoral sedimentary dynamics responsible for transport to the canyons heads and conduit to the Biscay Abyssal plain. Biscay Abyssal Plain shows evidence of a strong westward current affecting the surveyed strip of this more than 10 km wide plain. Presence of two parallel deep sea channels, erosive scarps, and erosion of gully divides on the lower slope, may indicate that this is part of the distal fan at the termination of the large turbiditic system fed by Cap Ferret, Capbreton and other large canyons (Santander, Torrelavega, Lastres and Llanes) to the west of ACS.Instituto Español de OceanografíaVersión del edito

    Electrophysiological Heterogeneity of Fast-Spiking Interneurons: Chandelier versus Basket Cells

    Get PDF
    In the prefrontal cortex, parvalbumin-positive inhibitory neurons play a prominent role in the neural circuitry that subserves working memory, and alterations in these neurons contribute to the pathophysiology of schizophrenia. Two morphologically distinct classes of parvalbumin neurons that target the perisomatic region of pyramidal neurons, chandelier cells (ChCs) and basket cells (BCs), are generally thought to have the same "fast-spiking" phenotype, which is characterized by a short action potential and high frequency firing without adaptation. However, findings from studies in different species suggest that certain electrophysiological membrane properties might differ between these two cell classes. In this study, we assessed the physiological heterogeneity of fast-spiking interneurons as a function of two factors: species (macaque monkey vs. rat) and morphology (chandelier vs. basket). We showed previously that electrophysiological membrane properties of BCs differ between these two species. Here, for the first time, we report differences in ChCs membrane properties between monkey and rat. We also found that a number of membrane properties differentiate ChCs from BCs. Some of these differences were species-independent (e.g., fast and medium afterhyperpolarization, firing frequency, and depolarizing sag), whereas the differences in the first spike latency between ChCs and BCs were species-specific. Our findings indicate that different combinations of electrophysiological membrane properties distinguish ChCs from BCs in rodents and primates. Such electrophysiological differences between ChCs and BCs likely contribute to their distinctive roles in cortical circuitry in each species. © 2013 Povysheva et al

    Polymer Composites Containing Gated Mesoporous Materials for On-Command Controlled Release

    Full text link
    Polyamidic nanofibrous membranes containing gated silica mesoporous particles, acting as carriers, are described as novel hybrid composite materials for encapsulation and on-command delivery of garlic extracts. The carrier system consists of MCM-41 solids functionalized in the outer surface, with linear polyamines (solid P1) and with hydrolyzed starch (solid P2), both acting as molecular gates. Those particles were adsorbed on electospun nylon-6 nanofibrous membranes yielding to composite materials M1 and M2. FE-SEM analysis confirmed the presence of particles incorporated on the nylon nanofibers. The release of the entrapped molecules (garlic extract) from the P1, P2, M1, and M2 materials was evaluated using cyclic voltammetry measurements. Electrochemical studies showed that at acidic pH P1 and M1 were unable to release their entrapped cargo (closed gate), whereas at neutral pH both materials release their loading (open gate). Dealing with P2 and M2 materials, in the absence of pancreatin a negligible release is observed (closed gate), whereas in the presence of enzyme the load is freely to diffuse to the solution. These newly developed composite nanomaterials, provide a homogeneous easy-to-handle system with controlled delivery and bioactive-protective features, having potential applications on pharmacology, medical and engineering fields.The authors wish to express their gratitude to the Generalitat Valenciana (Grisolia scholarship 2011/012, project PROM-ETEO/2009/016), Spanish Government (MINECO Projects AGL2012-39597-C02-01, AGL2012-39597-C02-02 and MAT2012-38429-C04-01) and the CIBER-BBN for their support. IILA thanks DISTAM and Universita degli di Milano for a specialization scholarship. We would also like to thank the Institut de Ciencia dels Materials (ICMUV) and to the Microscopy Service of the Universitat Politecnica de Valencia for technical support. We thank Roquette for the Glucidex samples.Acosta Romero, C.; Pérez Esteve, E.; Fuenmayor, CA.; Benedetti, S.; Cosio, MS.; Soto Camino, J.; Sancenón Galarza, F.... (2014). Polymer Composites Containing Gated Mesoporous Materials for On-Command Controlled Release. ACS Applied Materials and Interfaces. 6(9):6453-6460. https://doi.org/10.1021/am405939y645364606

    Drosophila TIEG Is a Modulator of Different Signalling Pathways Involved in Wing Patterning and Cell Proliferation

    Get PDF
    Acquisition of a final shape and size during organ development requires a regulated program of growth and patterning controlled by a complex genetic network of signalling molecules that must be coordinated to provide positional information to each cell within the corresponding organ or tissue. The mechanism by which all these signals are coordinated to yield a final response is not well understood. Here, I have characterized the Drosophila ortholog of the human TGF-β Inducible Early Gene 1 (dTIEG). TIEG are zinc-finger proteins that belong to the Krüppel-like factor (KLF) family and were initially identified in human osteoblasts and pancreatic tumor cells for the ability to enhance TGF-β response. Using the developing wing of Drosophila as “in vivo” model, the dTIEG function has been studied in the control of cell proliferation and patterning. These results show that dTIEG can modulate Dpp signalling. Furthermore, dTIEG also regulates the activity of JAK/STAT pathway suggesting a conserved role of TIEG proteins as positive regulators of TGF-β signalling and as mediators of the crosstalk between signalling pathways acting in a same cellular context

    The Drosophila FoxA Ortholog Fork Head Regulates Growth and Gene Expression Downstream of Target of Rapamycin

    Get PDF
    Forkhead transcription factors of the FoxO subfamily regulate gene expression programs downstream of the insulin signaling network. It is less clear which proteins mediate transcriptional control exerted by Target of rapamycin (TOR) signaling, but recent studies in nematodes suggest a role for FoxA transcription factors downstream of TOR. In this study we present evidence that outlines a similar connection in Drosophila, in which the FoxA protein Fork head (FKH) regulates cellular and organismal size downstream of TOR. We find that ectopic expression and targeted knockdown of FKH in larval tissues elicits different size phenotypes depending on nutrient state and TOR signaling levels. FKH overexpression has a negative effect on growth under fed conditions, and this phenotype is not further exacerbated by inhibition of TOR via rapamycin feeding. Under conditions of starvation or low TOR signaling levels, knockdown of FKH attenuates the size reduction associated with these conditions. Subcellular localization of endogenous FKH protein is shifted from predominantly cytoplasmic on a high-protein diet to a pronounced nuclear accumulation in animals with reduced levels of TOR or fed with rapamycin. Two putative FKH target genes, CG6770 and cabut, are transcriptionally induced by rapamycin or FKH expression, and silenced by FKH knockdown. Induction of both target genes in heterozygous TOR mutant animals is suppressed by mutations in fkh. Furthermore, TOR signaling levels and FKH impact on transcription of the dFOXO target gene d4E-BP, implying a point of crosstalk with the insulin pathway. In summary, our observations show that an alteration of FKH levels has an effect on cellular and organismal size, and that FKH function is required for the growth inhibition and target gene induction caused by low TOR signaling levels

    Transcriptional Activity and Nuclear Localization of Cabut, the Drosophila Ortholog of Vertebrate TGF-β-Inducible Early-Response Gene (TIEG) Proteins

    Get PDF
    BackgroundCabut (Cbt) is a C2H2-class zinc finger transcription factor involved in embryonic dorsal closure, epithelial regeneration and other developmental processes in Drosophila melanogaster. Cbt orthologs have been identified in other Drosophila species and insects as well as in vertebrates. Indeed, Cbt is the Drosophila ortholog of the group of vertebrate proteins encoded by the TGF-ß-inducible early-response genes (TIEGs), which belong to Sp1-like/Krüppel-like family of transcription factors. Several functional domains involved in transcriptional control and subcellular localization have been identified in the vertebrate TIEGs. However, little is known of whether these domains and functions are also conserved in the Cbt protein.Methodology/Principal FindingsTo determine the transcriptional regulatory activity of the Drosophila Cbt protein, we performed Gal4-based luciferase assays in S2 cells and showed that Cbt is a transcriptional repressor and able to regulate its own expression. Truncated forms of Cbt were then generated to identify its functional domains. This analysis revealed a sequence similar to the mSin3A-interacting repressor domain found in vertebrate TIEGs, although located in a different part of the Cbt protein. Using β-Galactosidase and eGFP fusion proteins, we also showed that Cbt contains the bipartite nuclear localization signal (NLS) previously identified in TIEG proteins, although it is non-functional in insect cells. Instead, a monopartite NLS, located at the amino terminus of the protein and conserved across insects, is functional in Drosophila S2 and Spodoptera exigua Sec301 cells. Last but not least, genetic interaction and immunohistochemical assays suggested that Cbt nuclear import is mediated by Importin-α2.Conclusions/SignificanceOur results constitute the first characterization of the molecular mechanisms of Cbt-mediated transcriptional control as well as of Cbt nuclear import, and demonstrate the existence of similarities and differences in both aspects of Cbt function between the insect and the vertebrate TIEG proteins

    Bifurcation study of a neural field competition model with an application to perceptual switching in motion integration.

    Get PDF
    Perceptual multistability is a phenomenon in which alternate interpretations of a fixed stimulus are perceived intermittently. Although correlates between activity in specific cortical areas and perception have been found, the complex patterns of activity and the underlying mechanisms that gate multistable perception are little understood. Here, we present a neural field competition model in which competing states are represented in a continuous feature space. Bifurcation analysis is used to describe the different types of complex spatio-temporal dynamics produced by the model in terms of several parameters and for different inputs. The dynamics of the model was then compared to human perception investigated psychophysically during long presentations of an ambiguous, multistable motion pattern known as the barberpole illusion. In order to do this, the model is operated in a parameter range where known physiological response properties are reproduced whilst also working close to bifurcation. The model accounts for characteristic behaviour from the psychophysical experiments in terms of the type of switching observed and changes in the rate of switching with respect to contrast. In this way, the modelling study sheds light on the underlying mechanisms that drive perceptual switching in different contrast regimes. The general approach presented is applicable to a broad range of perceptual competition problems in which spatial interactions play a role
    corecore