108 research outputs found

    Identification of the C2-1H histidine NMR resonances in chloramphenicol acetyltransferase by a 13C-1H heteronuclear multiple quantum coherence method

    Get PDF
    AbstractChloramphenicol acetyltransferase (CAT) was used to assess the feasibility of study of specific proton resonances in an enzyme of overall molecular mass 75000. [ring2-13C]Histidine was selectively incorporated into the type III chloramphenicol acetyltransferase (CATIII) using a histidine auxotroph of E. coli. Heteronuclear multiple and single quantum experiments were used to select the C2 protons in the histidyl imidazole ring. One- and two-dimensional spectra revealed six signals out of a total of seven histidine residues in CATIII. pH titration, chemical modification and ligand binding were used to demonstrate that the signal from H195, the histidine at the active site, is not among those observed. Nevertheless, this work demonstrates that selective isotopic enrichment and multiple quantum coherence techniques can be used to distinguish proton resonances in a protein of high molecular mass

    Soft Gluon Approach for Diffractive Photoproduction of J/psi

    Get PDF
    We study diffractive photoproduction of J/ψJ/\psi by taking the charm quark as a heavy quark. A description of nonperturbative effect related to J/ψJ/\psi can be made by using NRQCD. In the forward region of the kinematics, the interaction between the ccˉc\bar c-pair and the initial hadron is due to exchange of soft gluons. The effect of the exchange can be studied by using the expansion in the inverse of the quark mass mcm_c. At the leading order we find that the nonperturbative effect related to the initial hadron is represented by a matrix element of field strength operators, which are separated in the moving direction of J/ψJ/\psi in the space-time. The S-matrix element is then obtained without using perturbative QCD and the results are not based on any model. Corrections to the results can be systematically added. Keeping the dominant contribution of the S-matrix element in the large energy limit we find that the imaginary part of the S-matrix element is related to the gluon distribution for x0x\to 0 with a reasonable assumption, the real part can be obtained with another approximation or with dispersion relation. Our approach is different than previous approaches and also our results are different than those in these approaches. The differences are discussed in detail. A comparison with experiment is also made and a qualitative agreement is found.Comment: 25 pages, 6 figures. Tiny changes in two figures, conclusion and text unchanged, accpeted by Nucl. Phys.

    Diffractive Photoproduction of Eta_c

    Full text link
    Diffractive photoproduction of ηc\eta_c is an important process to study the effect of Odderon, whose existence is still not confirmed in experiment. A detailed interpretation of Odderon in QCD, i.e., in terms of gluons is also unclear.Taking charm quarks as heavy quarks, we can use NRQCD and take ηc\eta_c as a ccˉc\bar c bound state. Hence, in the production of ηc\eta_ca free ccˉc\bar c pair is first produced and this pair is transformed into ηc\eta_c subsequently.In the forward region of the kinematics, the ccˉc\bar c pair interacts with initial hadron through exchanges of soft gluons. This interaction can be studied with HQET, which provides a systematic expansion in the inverse of the cc-quark mass mcm_c. We find that the calculation of the SS-matrix element in the forward region can be formulated as the problem of solving a wave function of a cc-quark propagating in a background field of soft gluons. At leading order we find that the differential cross-section can be expressed with four functions, which are defined with a twist-3 operator of gluons. The effect of exchanging a Odderon can be identified with this operator in our case. We discuss our results in detail and compare them with those obtained in previous studies. Our results and those from other studies show that the differential cross-section is very small in the forward region. We also show that the production through photon exchange is dominant in the extremely forward region, hence the effect of Odderon exchange can not be identified in this region.For completeness we also give results for diffractive photoproduction of J/ΨJ/\Psi.Comment: 20 pages with 3 figures. Text improve

    Superconducting String Texture

    Full text link
    We present a detailed analytical and numerical study of a novel type of static, superconducting, classically stable string texture in a renormalizable topologically trivial massive U(1) gauge model with one charged and one neutral scalar. An upper bound on the mass of the charged scalar as well as on the current that the string can carry are established. A preliminary unsuccesful search for stable solutions corresponding to large superconducting loops is also reported.Comment: RevTex, 14 pages, 8 figure

    Dynamical parton distributions of the nucleon and very small-x physics

    Full text link
    Utilizing recent DIS measurements (F_{2,L}) and data on dilepton and high-E_{T} jet production we determine the dynamical parton distributions of the nucleon generated radiatively from valence-like positive input distributions at optimally chosen low resolution scales. These are compared with `standard' distributions generated from positive input distributions at some fixed and higher resolution scale. It is shown that up to the next to leading order NLO(\bar{MS}, DIS) of perturbative QCD considered in this paper, the uncertainties of the dynamical distributions are, as expected, smaller than those of their standard counterparts. This holds true in particular in the presently unexplored extremely small-x region relevant for evaluating ultrahigh energy cross sections in astrophysical applications. It is noted that our new dynamical distributions are compatible, within the presently determined uncertainties, with previously determined dynamical parton distributions.Comment: 21 pages, 2 tables, 16 figures, v2: added Ref.[60], replaced Fig.

    Observation of Scaling Violations in Scaled Momentum Distributions at HERA

    Get PDF
    Charged particle production has been measured in deep inelastic scattering (DIS) events over a large range of xx and Q2Q^2 using the ZEUS detector. The evolution of the scaled momentum, xpx_p, with Q2,Q^2, in the range 10 to 1280 GeV2GeV^2, has been investigated in the current fragmentation region of the Breit frame. The results show clear evidence, in a single experiment, for scaling violations in scaled momenta as a function of Q2Q^2.Comment: 21 pages including 4 figures, to be published in Physics Letters B. Two references adde

    D* Production in Deep Inelastic Scattering at HERA

    Get PDF
    This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel D+(D0Kπ+)π+D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ (+ c.c.) has been used in the study. The e+pe^+p cross section for inclusive D^{*\pm} production with 5<Q2<100GeV25<Q^2<100 GeV^2 and y<0.7y<0.7 is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {1.3<pT(D±)<9.01.3<p_T(D^{*\pm})<9.0 GeV and η(D±)<1.5| \eta(D^{*\pm}) |<1.5}. Differential cross sections as functions of p_T(D^{*\pm}), η(D±),W\eta(D^{*\pm}), W and Q2Q^2 are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and η\eta(D^{*\pm}), the charm contribution F2ccˉ(x,Q2)F_2^{c\bar{c}}(x,Q^2) to the proton structure function is determined for Bjorken xx between 2 \cdot 104^{-4} and 5 \cdot 103^{-3}.Comment: 17 pages including 4 figure

    Search for Colour Singlet and Colour Reconnection Effects in Hadronic Z Decays at LEP

    Get PDF
    A search is performed in symmetric 3-jet hadronic Z decay events for evidence of colour singlet production or colour reconnection effects. Asymmetries in the angular separation of particles are found to be sensitive indicators of such effects. Upper limits on the level of colour singlet production and colour reconnection effects are established for a variety of models

    A Measurement of the Proton Structure Function F ⁣2(x,Q2)F_{\!2}(x,Q^2)

    Full text link
    A measurement of the proton structure function F ⁣2(x,Q2)F_{\!2}(x,Q^2) is reported for momentum transfer squared Q2Q^2 between 4.5 GeV2GeV^2 and 1600 GeV2GeV^2 and for Bjorken xx between 1.81041.8\cdot10^{-4} and 0.13 using data collected by the HERA experiment H1 in 1993. It is observed that F ⁣2F_{\!2} increases significantly with decreasing xx, confirming our previous measurement made with one tenth of the data available in this analysis. The Q2Q^2 dependence is approximately logarithmic over the full kinematic range covered. The subsample of deep inelastic events with a large pseudo-rapidity gap in the hadronic energy flow close to the proton remnant is used to measure the "diffractive" contribution to F ⁣2F_{\!2}.Comment: 32 pages, ps, appended as compressed, uuencoded fil
    corecore