236 research outputs found

    Ultrafast all-optical switching using doped chromoprotein films

    Full text link
    Next-generation communication networks require > Tbit/s single-channel data transfer and processing with sub-picosecond switches and routers at network nodes. Materials enabling ultrafast all-optical switching have high potential to solve the speed limitations of current optoelectronic circuits. Chromoproteins have been shown to exhibit a fast light-controlled refractive index change much larger than that induced by the optical Kerr effect due to a purely electronic nonlinearity, alleviating the driving energy requirements for optical switching. Here, we report femtosecond transient grating experiments demonstrating the feasibility of < 200-fs all-optical switching by hydrated thin films of photoactive yellow protein, for the first time, and compare the results with those obtained using bacteriorhodopsin. Possibilities for the practical utilization of the scheme in extremely high-speed optical modulation and switching/routing with nominally infinite extinction contrast are discussed.Comment: 12 pages, 3 Schemes, 4 Figures. The following article has been submitted to APL Photonics. After it is published, it will be found at https://aip.scitation.org/journal/ap

    Strategies and tools for speed management on European roads.

    Get PDF
    The aim of the European project MASTER (MAnaging Speeds of Traffic on European Roads) is to produce information that can be cited in the preparation of national and EU decisions concerning speed management and standards for speed control equipment. For this purpose, the project seeks answers to three key questions:1) What are acceptable ranges of speeds?2) What are the key factors influencing drivers’ choice of speed?3) What are the best speed management tools and strategies?Each of three research areas addresses one of these questions. Area 1 is concerned with developing a basis for appraisal of effects of different levels of speed upon accident occurrence, emissions, noise, vehicle operating costs and travel time. Area 2 provides information on factors that influence drivers speed behaviour with respect to present speed levels and speed management methods in Europe, enforcement levels, motivation and acceptability of driving speeds, and road design and subjective road categorisation. Area 3 reviews various tools for speed management, tests the most promising ones and gives recommendations for implementation of Advanced Transport Telematics (ATT) systems. The summary reports from these three work areas provide the main inputs to this paper, which is concerned with making recommendations for speed management strategies and policies. The full results of the project are documented in 26 reports which are listed in the reference section of this paper

    Surrogate safety measures and traffic conflict observations.

    Get PDF
    The chapter primarily focuses on observing traffic conflicts (also known as near-accidents) as a site-based road safety analysis technique. Traffic conflicts are a type of surrogate safety measure. The term surrogate indicates that non-accident-based indicators are used to assess VRU safety instead ofthe more traditional approach focusing on accidents (see chapter 2). The theory underpinning surrogate safety measures is briefly described, followed by a discussion on the characteristics of the traffic conflict technique. Next, guidelines for conducting traffic conflict observations using trained human observers or video cameras are presented. Chapter 4 concludes with examples of the use of the traffic conflict technique in road safety studies focusing on VRUs

    Progressive alterations in ultraviolet-B induced phototropism during Arabidopsis development

    Get PDF
    Low fluence rate ultraviolet-B radiation (280-315 nm) substantially affects plant morphology. Numerous UV-B induced morphological adaptations in Arabidopsis are ascribed to the UV-B specific photoreceptor UV RESISTANCE LOCUS 8 (UVR8). Well documented examples are shorter petioles and shorter stems. Alterations are also observed at the cellular level such as changes in cell elongation, division and differentiation. Notwithstanding this extensive knowledge of UV-B responses, the mechanisms by which UV-B radiation controls plant architecture are poorly understood. Our recent research in Arabidopsis revealed that unilateral narrow-band UV-B radiation can induce reorientation of etiolated hypocotyls through UVR8 mediated signaling. This response is triggered by unilateral radiation of wavelengths shorter than 340 nm and is temporally distinct from phototropin-mediated phototropic bending. Analysis of the kinetics of plant reorientation allowed us to quantify the relative contribution of UVR8 and phototropins in steering this UV-B induced phototropic movement of etiolated hypocotyls. These data indicate that in etiolated seedlings, phototropins are more sensitive to UV-B for regulating phototropism than UVR8 and therefore mask the effect of UVR8. Phototropin signaling under UV-B is mechanistically similar to that in blue light, involving phototropin autophosphorylation and NPH3 dephosphorylation. Furthermore, the negative feedback controlled by REPRESSOR OF UV-B PHOTOMORPHOGENESIS prevents UVR8-mediated fast phototropin-dependent bending. The UVR8-phototropin relationship described for etiolated seedlings is not universally applicable. We found that the main photoreceptor for UV-B-induced phototropism in inflorescence stems is UVR8, with a less significant role for phototropins. The contribution of UVR8 expressed in different cell layers to this response is currently being examined. Based on pharmacological assays, mutant analysis and reporter lines, this shifting role of UVR8 and phototropins during plant development will be presented and discussed

    Planet formation: The case for large efforts on the computational side

    Get PDF
    Modern astronomy has finally been able to observe protoplanetary disks in reasonable resolution and detail, unveiling the processes happening during planet formation. These observed processes are understood under the framework of disk-planet interaction, a process studied analytically and modeled numerically for over 40 years. Long a theoreticians' game, the wealth of observational data has been allowing for increasingly stringent tests of the theoretical models. Modeling efforts are crucial to support the interpretation of direct imaging analyses, not just for potential detections but also to put meaningful upper limits on mass accretion rates and other physical quantities in current and future large-scale surveys. This white paper addresses the questions of what efforts on the computational side are required in the next decade to advance our theoretical understanding, explain the observational data, and guide new observations. We identified the nature of accretion, ab initio planet formation, early evolution, and circumplanetary disks as major fields of interest in computational planet formation. We recommend that modelers relax the approximations of alpha-viscosity and isothermal equations of state, on the grounds that these models use flawed assumptions, even if they give good visual qualitative agreement with observations. We similarly recommend that population synthesis move away from 1D hydrodynamics. The computational resources to reach these goals should be developed during the next decade, through improvements in algorithms and the hardware for hybrid CPU/GPU clusters. Coupled with high angular resolution and great line sensitivity in ground based interferometers, ELTs and JWST, these advances in computational efforts should allow for large strides in the field in the next decade.Comment: White paper submitted to the Astro2020 decadal surve

    BLUF Domain Function Does Not Require a Metastable Radical Intermediate State

    Get PDF
    BLUF (blue light using flavin) domain proteins are an important family of blue light-sensing proteins which control a wide variety of functions in cells. The primary light-activated step in the BLUF domain is not yet established. A number of experimental and theoretical studies points to a role for photoinduced electron transfer (PET) between a highly conserved tyrosine and the flavin chromophore to form a radical intermediate state. Here we investigate the role of PET in three different BLUF proteins, using ultrafast broadband transient infrared spectroscopy. We characterize and identify infrared active marker modes for excited and ground state species and use them to record photochemical dynamics in the proteins. We also generate mutants which unambiguously show PET and, through isotope labeling of the protein and the chromophore, are able to assign modes characteristic of both flavin and protein radical states. We find that these radical intermediates are not observed in two of the three BLUF domains studied, casting doubt on the importance of the formation of a population of radical intermediates in the BLUF photocycle. Further, unnatural amino acid mutagenesis is used to replace the conserved tyrosine with fluorotyrosines, thus modifying the driving force for the proposed electron transfer reaction; the rate changes observed are also not consistent with a PET mechanism. Thus, while intermediates of PET reactions can be observed in BLUF proteins they are not correlated with photoactivity, suggesting that radical intermediates are not central to their operation. Alternative nonradical pathways including a keto–enol tautomerization induced by electronic excitation of the flavin ring are considered

    Transgenic Mice for Intersectional Targeting of Neural Sensors and Effectors with High Specificity and Performance

    Get PDF
    SummaryAn increasingly powerful approach for studying brain circuits relies on targeting genetically encoded sensors and effectors to specific cell types. However, current approaches for this are still limited in functionality and specificity. Here we utilize several intersectional strategies to generate multiple transgenic mouse lines expressing high levels of novel genetic tools with high specificity. We developed driver and double reporter mouse lines and viral vectors using the Cre/Flp and Cre/Dre double recombinase systems and established a new, retargetable genomic locus, TIGRE, which allowed the generation of a large set of Cre/tTA-dependent reporter lines expressing fluorescent proteins, genetically encoded calcium, voltage, or glutamate indicators, and optogenetic effectors, all at substantially higher levels than before. High functionality was shown in example mouse lines for GCaMP6, YCX2.60, VSFP Butterfly 1.2, and Jaws. These novel transgenic lines greatly expand the ability to monitor and manipulate neuronal activities with increased specificity.Video Abstrac
    corecore