123 research outputs found

    Scaffold design and characterisation for osteochondral tissue regeneration

    Full text link
    El objetivo principal de esta tesis doctoral es el diseño de un andamio polimérico bicapa macroporoso para la regeneración del complejo osteocondral. El material empleado para la fabricación del constructo ha sido el ácido poli(L-láctico), un polímero biodegradable de la familia de los poliésteres. Una de las capas del andamio ha sido diseñada para asistir la regeneración del cartílago articular. La otra capa sirve de anclaje al hueso subcondral, y se diferencia de la anterior en sus propiedades mecánicas y bioactividad. Este comportamiento ha sido logrado por combinación del ácido poli(L-láctico) con nanopartículas inorgánicas. Ambas capas están unidas entre sí por una fina capa de material no poroso que evita el flujo de células de una parte a otra del constructo. Para lograr este objetivo se realizó un primer estudio de diseño variando la morfología de los andamios hasta obtener aquella arquitectura más adecuada para la regeneración de ambos tejidos. Se varió parámetros de síntesis tales como la concentración de polímero y el ratio entre polímero y porógeno. Los andamios fueron evaluados mecánica y fisicoquímicamente y se seleccionó los parámetros de síntesis del ácido poli(L-láctico) que dieron mejores resultados. En la regeneración del tejido es esencial conocer cómo variarán las propiedades del material una vez sea implantado y comience su degradación. Por lo tanto, fue considerado oportuno realizar un estudio de degradación del material in vitro en diversas condiciones. El estudio de la degradación fue realizado en condiciones estáticas durante 6, 12, 18, 24 semanas y 1 año y en condiciones dinámicas durante 1, 2, 4 y 6 semanas. Se evaluó tanto las características mecánicas como las fisicoquímicas tras los diversos tiempos de la degradación. Posteriormente, y para aumentar las características mecánicas y la bioactividad del anclaje óseo, se incorporó distintas cantidades de nanopartículas inorgánicas de hidroxiapatita y sílice a los andamios.Deplaine ., H. (2012). Scaffold design and characterisation for osteochondral tissue regeneration [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/14638Palanci

    L'impact d'actions préventives de la malnutrition auprès de personnes âgées vivant à domicile souffrant d'ulcère du pied diabétique: revue de la littérature : travail de Bachelor

    Get PDF
    Le diabète est une maladie chronique qui touche 422 millions de personnes dans le monde. L'une de ses complications majeures est l'ulcère du pied diabétique (UPD). En effet, quinze à vingt pourcents des diabétiques présenteront un ulcère au pied durant leur vie. Un des facteurs favorisant l'apparition de plaies est la malnutrition. L'état nutritionnel de tous les patients présentant un UPD devrait être pris en charge de manière globale pas des professionnels formés

    Dynamic RNA profiling in Plasmodium falciparum synchronized blood stages exposed to lethal doses of artesunate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Translation of the genome sequence of <it>Plasmodium sp</it>. into biologically relevant information relies on high through-put genomics technology which includes transcriptome analysis. However, few studies to date have used this powerful approach to explore transcriptome alterations of <it>P. falciparum </it>parasites exposed to antimalarial drugs.</p> <p>Results</p> <p>The rapid action of artesunate allowed us to study dynamic changes of the parasite transcriptome in synchronous parasite cultures exposed to the drug for 90 minutes and 3 hours. Developmentally regulated genes were filtered out, leaving 398 genes which presented altered transcript levels reflecting drug-exposure. Few genes related to metabolic pathways, most encoded chaperones, transporters, kinases, Zn-finger proteins, transcription activating proteins, proteins involved in proteasome degradation, in oxidative stress and in cell cycle regulation. A positive bias was observed for over-expressed genes presenting a subtelomeric location, allelic polymorphism and encoding proteins with potential export sequences, which often belonged to subtelomeric multi-gene families. This pointed to the mobilization of processes shaping the interface between the parasite and its environment. In parallel, pathways were engaged which could lead to parasite death, such as interference with purine/pyrimidine metabolism, the mitochondrial electron transport chain, proteasome-dependent protein degradation or the integrity of the food vacuole.</p> <p>Conclusion</p> <p>The high proportion of over-expressed genes encoding proteins exported from the parasite highlight the importance of extra-parasitic compartments as fields for exploration in drug research which, to date, has mostly focused on the parasite itself rather than on its intra and extra erythrocytic environment. Further work is needed to clarify which transcriptome alterations observed reflect a specific response to overcome artesunate toxicity or more general perturbations on the path to cellular death.</p

    Host cell deformability is linked to transmission in the human malaria parasite Plasmodium falciparum

    Get PDF
    available in PMC 2013 July 01.Gametocyte maturation in Plasmodium falciparum is a critical step in the transmission of malaria. While the majority of parasites proliferate asexually in red blood cells, a small fraction of parasites undergo sexual conversion and mature over 2 weeks to become competent for transmission to a mosquito vector. Immature gametocytes sequester in deep tissues while mature stages must be able to circulate, pass the spleen and present themselves to the mosquito vector in order to complete transmission. Sequestration of asexual red blood cell stage parasites has been investigated in great detail. These studies have demonstrated that induction of cytoadherence properties through specific receptor–ligand interactions coincides with a significant increase in host cell stiffness. In contrast, the adherence and biophysical properties of gametocyte-infected red blood cells have not been studied systematically. Utilizing a transgenic line for 3D live imaging, in vitro capillary assays and 3D finite element whole cell modelling, we studied the role of cellular deformability in determining the circulatory characteristics of gametocytes. Our analysis shows that the red blood cell deformability of immature gametocytes displays an overall decrease followed by rapid restoration in mature gametocytes. Intriguingly, simulations suggest that along with deformability variations, the morphological changes of the parasite may play an important role in tissue distribution in vivo. Taken together, we present a model, which suggests that mature but not immature gametocytes circulate in the peripheral blood for uptake in the mosquito blood meal and transmission to another human host thus ensuring long-term survival of the parasite.National Institutes of Health (U.S.) (R01A107755801)National Institutes of Health (U.S.) (R01HL094270)Singapore–MIT Alliance for Research and Technology ((SMART) Infectious Diseases Interdisciplinary Research Group)Singapore-MIT Alliance (Advanced Materials for Micro and Nano Systems Programme)Alexander von Humboldt-Stiftung (Feodor Lynen Research Fellowship

    In vitro mechanical fatigue behavior of poly-ε-caprolactone macroporous scaffolds for cartilage tissue engineering: Influence of pore filling by a poly(vinyl alcohol) gel

    Get PDF
    Polymeric scaffolds used in regenerative therapies are implanted in the damaged tissue and subjected to repeated loading cycles. In the case of articular cartilage engineering, an implanted scaffold is typically subjected to long term dynamic compression. The evolution of the mechanical properties of the scaffold during bioresorption has been deeply studied in the past, but the possibility of failure due to mechanical fatigue has not been properly addressed. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. In this work fatigue studies of polycaprolactone scaffolds were carried by subjecting the scaffold to repeated compression cycles in conditions simulating the scaffold implanted in the articular cartilage. The behaviour of the polycaprolactone sponge with the pores filled with a poly(vinyl alcohol) gel simulating the new formed tissue within the pores was compared with that of the material immersed in water. Results were analyzed with Morrow’s criteria for failure and accurate fittings are obtained just up to 200 loading cycles. It is also shown that the presence of poly(vinyl alcohol) increases the elastic modulus of the scaffolds, the effect being more pronounced with increasing the number of freeze/thawing cycles.This work is funded by FEDER funds through the "Programa Operacional Fatores de Competitividade – COMPETE" and by national funds arranged by FCT- Fundação para a Ciência e a Tecnologia, project reference PEST-C/FIS/UI607/2011. The authors also thank funding from Matepro –Optimizing Materials and Processes”, ref. NORTE-07-0124-FEDER000037”, co-funded by the “Programa Operacional Regional do Norte” (ON.2 – O Novo Norte), under the “Quadro de Referência Estratégico Nacional” (QREN), through the “Fundo Europeu de Desenvolvimento Regional” (FEDER). The authors also thank support from the COST Action MP1206 “Electrospun Nano-fibres for bio inspired composite materials and innovative industrial applications” and MP1301 “New Generation Biomimetic and Customized Implants for Bone Engineering”. JAP and VS thank the FCT for the SFRH/BD/64586/2009 and SFRH/BPD/63148/2009 grants, respectively. JLGR acknowledge the support of the Spanish Ministry of Science and Innovation through project No. MAT2010-21611-C03-01 (including the FEDER financial support). CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund

    cAMP-Signalling Regulates Gametocyte-Infected Erythrocyte Deformability Required for Malaria Parasite Transmission.

    Get PDF
    Blocking Plasmodium falciparum transmission to mosquitoes has been designated a strategic objective in the global agenda of malaria elimination. Transmission is ensured by gametocyte-infected erythrocytes (GIE) that sequester in the bone marrow and at maturation are released into peripheral blood from where they are taken up during a mosquito blood meal. Release into the blood circulation is accompanied by an increase in GIE deformability that allows them to pass through the spleen. Here, we used a microsphere matrix to mimic splenic filtration and investigated the role of cAMP-signalling in regulating GIE deformability. We demonstrated that mature GIE deformability is dependent on reduced cAMP-signalling and on increased phosphodiesterase expression in stage V gametocytes, and that parasite cAMP-dependent kinase activity contributes to the stiffness of immature gametocytes. Importantly, pharmacological agents that raise cAMP levels in transmissible stage V gametocytes render them less deformable and hence less likely to circulate through the spleen. Therefore, phosphodiesterase inhibitors that raise cAMP levels in P. falciparum infected erythrocytes, such as sildenafil, represent new candidate drugs to block transmission of malaria parasites

    An in vitro experimental model to predict the mechanical behaviour of macroporous scaffolds implanted in articular cartilage

    Full text link
    A model is proposed to assess mechanical behaviour of tissue engineering scaffolds and predict their performance in vivo during tissue regeneration. To simulate the growth of tissue inside the pores of the scaffold, the scaffold is swollen with a Poly (Vinyl alcohol) solution and subjected to repeated freezing and thawing cycles. In this way the Poly (Vinyl alcohol) becomes a gel whose stiffness increases with the number of freezing and thawing cycles. Mechanical properties of the construct immersed in water are shown to be determined, in large extent, by the water mobility constraints imposed by the gel filling the pores. This is similar to the way that water mobility determines mechanical properties of highly hydrated tissues, such as articular cartilage. As a consequence, the apparent elastic modulus of the scaffold in compression tests is much higher than those of the empty scaffold or the gel. Thus this experimental model allows assessing fatigue behaviour of the scaffolds under long-term dynamic loading in a realistic way, without recourse to animal experimentation.The UPV group acknowledges the support of the Spanish MICINN through project MAT2010-21611-C03-01. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER Actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. The authors thank the microscopy service of Universitat Politecnica de Valencia for useful help and advice and Ricardo Perez Feito for technical assistance in the experimental set up.Vikingsson, LKA.; Gallego Ferrer, G.; Gómez-Tejedor, JA.; Gómez Ribelles, JL. (2014). An in vitro experimental model to predict the mechanical behaviour of macroporous scaffolds implanted in articular cartilage. Journal of the Mechanical Behavior of Biomedical Materials. 32:125-131. https://doi.org/10.1016/j.jmbbm.2013.12.024S1251313

    Evolution of the Properties of a Poly(L-lactic acid) Scaffold with Double Porosity During In Vitro Degradation in a Phosphate-Buffered Saline Solution

    Full text link
    [EN] A poly(L-lactic acid) scaffold prepared by a combination of freeze-extraction and porogen-leaching methods was submitted to static degradation in a phosphate-buffered saline solution at pH 7.4 and 37 C for up to 12 months. After 6 months of degradation, the scaffold maintained its integrity, although noticeable changes in its permeability and pore size were recorded. After 12 months, scanning electron microscopy pictures showed that most of the trabeculae were broken, and the sample disaggregated under minimum loading. Neither weight loss nor crystallinity changes in the first heating calorimetric scan were observed during the degradation experiment. However, after 12 months, a rise in the crystallinity from 13 to 38% and a drop in the glass-transition temperature from 58 to 54 C were measured in the second heating scan. The onset of thermal degradation moved from 300 to 210 C after 12 months. Although the elastic modulus suffered only a very slight reduction with degradation time, the aggregate modulus decreased 44% after 6 months.The authors acknowledge the support of the Instituto de Salud Carlos III, Ministerio de Economıa y Competitividad, and the European Commission through FP7-ERANet EuroNanoMed 2011 PI11/03032 and FP7-PEOPLE-2012-IAPP (contract grant number PIAP-GA-2012–324386). The Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine is an initiative funded by the VI National R&D&i Plan 2008–2011, Iniciativa Ingenio 2010, and Consolider Program. Biomedical Research Networking Center actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. The authors also thank the Tissue Characterization Platform of the Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine for its technical support. They also thank the Linguistic Assistance Services of the Language Centre, Universitat Politecnica de Valencia, for their help in revising this article.Deplaine, H.; Acosta-Santamaría, VA.; Vidaurre Garayo, AJ.; Gómez Ribelles, JL.; Doblare Castellano, M.; Ochoa-Garrido, I.; Gallego Ferrer, G. (2014). Evolution of the Properties of a Poly(L-lactic acid) Scaffold with Double Porosity During In Vitro Degradation in a Phosphate-Buffered Saline Solution. Journal of Applied Polymer Science. 131:40956-40966. https://doi.org/10.1002/APP.40956S4095640966131Zhao, J., Yuan, X., Cui, Y., Ge, Q., & Yao, K. (2003). Preparation and characterization of poly(L-lactide)/ poly(?-caprolactone) fibrous scaffolds for cartilage tissue engineering. Journal of Applied Polymer Science, 91(3), 1676-1684. doi:10.1002/app.13323Hutmacher, D. W. (2001). Scaffold design and fabrication technologies for engineering tissues — state of the art and future perspectives. Journal of Biomaterials Science, Polymer Edition, 12(1), 107-124. doi:10.1163/156856201744489Butler, D. L., Goldstein, S. A., & Guilak, F. (2000). Functional Tissue Engineering: The Role of Biomechanics. Journal of Biomechanical Engineering, 122(6), 570-575. doi:10.1115/1.1318906Budyanto, L., Goh, Y. Q., & Ooi, C. P. (2008). Fabrication of porous poly(L-lactide) (PLLA) scaffolds for tissue engineering using liquid–liquid phase separation and freeze extraction. Journal of Materials Science: Materials in Medicine, 20(1), 105-111. doi:10.1007/s10856-008-3545-8Woodruff, M. A., Lange, C., Reichert, J., Berner, A., Chen, F., Fratzl, P., … Hutmacher, D. W. (2012). Bone tissue engineering: from bench to bedside. Materials Today, 15(10), 430-435. doi:10.1016/s1369-7021(12)70194-3Hollister, S. J. (2005). Porous scaffold design for tissue engineering. Nature Materials, 4(7), 518-524. doi:10.1038/nmat1421Hutmacher, D. W. (2000). Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21(24), 2529-2543. doi:10.1016/s0142-9612(00)00121-6Chiquet, M., Renedo, A. S., Huber, F., & Flück, M. (2003). How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biology, 22(1), 73-80. doi:10.1016/s0945-053x(03)00004-0Diego, R. B., Estellés, J. M., Sanz, J. A., García-Aznar, J. M., & Sánchez, M. S. (2007). Polymer scaffolds with interconnected spherical pores and controlled architecture for tissue engineering: Fabrication, mechanical properties, and finite element modeling. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 81B(2), 448-455. doi:10.1002/jbm.b.30683Pitt, C. G., Chasalow, F. I., Hibionada, Y. M., Klimas, D. M., & Schindler, A. (1981). Aliphatic polyesters. I. The degradation of poly(ϵ-caprolactone)in vivo. Journal of Applied Polymer Science, 26(11), 3779-3787. doi:10.1002/app.1981.070261124Lu, L., Peter, S. J., Lyman, M. D., Lai, H.-L., Leite, S. M., A. Tamada, J., … Mikos, A. G. (2000). In vitro degradation of porous poly(l-lactic acid) foams. Biomaterials, 21(15), 1595-1605. doi:10.1016/s0142-9612(00)00048-xLu, L., Peter, S. J., D. Lyman, M., Lai, H.-L., Leite, S. M., Tamada, J. A., … Mikos, A. G. (2000). In vitro and in vivo degradation of porous poly(dl-lactic-co-glycolic acid) foams. Biomaterials, 21(18), 1837-1845. doi:10.1016/s0142-9612(00)00047-8Odelius, K., Höglund, A., Kumar, S., Hakkarainen, M., Ghosh, A. K., Bhatnagar, N., & Albertsson, A.-C. (2011). Porosity and Pore Size Regulate the Degradation Product Profile of Polylactide. Biomacromolecules, 12(4), 1250-1258. doi:10.1021/bm1015464GONG, Y., ZHOU, Q., GAO, C., & SHEN, J. (2007). In vitro and in vivo degradability and cytocompatibility of poly(l-lactic acid) scaffold fabricated by a gelatin particle leaching method. Acta Biomaterialia, 3(4), 531-540. doi:10.1016/j.actbio.2006.12.008Zhao, J., Han, W., Tu, M., Huan, S., Zeng, R., Wu, H., … Zhou, C. (2012). Preparation and properties of biomimetic porous nanofibrous poly(l-lactide) scaffold with chitosan nanofiber network by a dual thermally induced phase separation technique. Materials Science and Engineering: C, 32(6), 1496-1502. doi:10.1016/j.msec.2012.04.031Hakkarainen, M., Albertsson, A.-C., & Karlsson, S. (1996). Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in vivo degradation of homo- and copolymers of PLA and PGA. Polymer Degradation and Stability, 52(3), 283-291. doi:10.1016/0141-3910(96)00009-2Zhang, X., Espiritu, M., Bilyk, A., & Kurniawan, L. (2008). Morphological behaviour of poly(lactic acid) during hydrolytic degradation. Polymer Degradation and Stability, 93(10), 1964-1970. doi:10.1016/j.polymdegradstab.2008.06.007Chen, C.-C., Chueh, J.-Y., Tseng, H., Huang, H.-M., & Lee, S.-Y. (2003). Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials, 24(7), 1167-1173. doi:10.1016/s0142-9612(02)00466-0Thomson, R. C., Wake, M. C., Yaszemski, M. J., & Mikos, A. G. (1995). Biodegradable polymer scaffolds to regenerate organs. Advances in Polymer Science, 245-274. doi:10.1007/3540587888_18Li, W.-J., & Tuan, R. S. (2005). Polymeric Scaffolds for Cartilage Tissue Engineering. Macromolecular Symposia, 227(1), 65-76. doi:10.1002/masy.200550906Ma, J., He, X., & Jabbari, E. (2010). Osteogenic Differentiation of Marrow Stromal Cells on Random and Aligned Electrospun Poly(l-lactide) Nanofibers. Annals of Biomedical Engineering, 39(1), 14-25. doi:10.1007/s10439-010-0106-3Dai, L., Li, D., & He, J. (2013). Degradation of graft polymer and blend based on cellulose and poly(L-lactide). Journal of Applied Polymer Science, 130(4), 2257-2264. doi:10.1002/app.39451Vieira, A. C., Vieira, J. C., Ferra, J. M., Magalhães, F. D., Guedes, R. M., & Marques, A. T. (2011). Mechanical study of PLA–PCL fibers during in vitro degradation. Journal of the Mechanical Behavior of Biomedical Materials, 4(3), 451-460. doi:10.1016/j.jmbbm.2010.12.006Gaona, L. A., Gómez Ribelles, J. L., Perilla, J. E., & Lebourg, M. (2012). Hydrolytic degradation of PLLA/PCL microporous membranes prepared by freeze extraction. Polymer Degradation and Stability, 97(9), 1621-1632. doi:10.1016/j.polymdegradstab.2012.06.031Tsuji, H., Mizuno, A., & Ikada, Y. (2000). Properties and morphology of poly(L-lactide). III. Effects of initial crystallinity on long-termin vitro hydrolysis of high molecular weight poly(L-lactide) film in phosphate-buffered solution. Journal of Applied Polymer Science, 77(7), 1452-1464. doi:10.1002/1097-4628(20000815)77:73.0.co;2-sTsuji, H., & Ikada, Y. (2000). Properties and morphology of poly( l -lactide) 4. Effects of structural parameters on long-term hydrolysis of poly( l -lactide) in phosphate-buffered solution. Polymer Degradation and Stability, 67(1), 179-189. doi:10.1016/s0141-3910(99)00111-1Freyman, T. M., Yannas, I. V., & Gibson, L. J. (2001). Cellular materials as porous scaffolds for tissue engineering. Progress in Materials Science, 46(3-4), 273-282. doi:10.1016/s0079-6425(00)00018-9Li, S., de Wijn, J. R., Li, J., Layrolle, P., & de Groot, K. (2003). Macroporous Biphasic Calcium Phosphate Scaffold with High Permeability/Porosity Ratio. Tissue Engineering, 9(3), 535-548. doi:10.1089/107632703322066714Wagoner Johnson, A. J., & Herschler, B. A. (2011). A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomaterialia, 7(1), 16-30. doi:10.1016/j.actbio.2010.07.012Rezwan, K., Chen, Q. Z., Blaker, J. J., & Boccaccini, A. R. (2006). Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27(18), 3413-3431. doi:10.1016/j.biomaterials.2006.01.039Santamaría, V. A., Deplaine, H., Mariggió, D., Villanueva-Molines, A. R., García-Aznar, J. M., Ribelles, J. L. G., … Ochoa, I. (2012). Influence of the macro and micro-porous structure on the mechanical behavior of poly(l-lactic acid) scaffolds. Journal of Non-Crystalline Solids, 358(23), 3141-3149. doi:10.1016/j.jnoncrysol.2012.08.001Izal, I., Aranda, P., Sanz-Ramos, P., Ripalda, P., Mora, G., Granero-Moltó, F., … Prósper, F. (2012). Culture of human bone marrow-derived mesenchymal stem cells on of poly(l-lactic acid) scaffolds: potential application for the tissue engineering of cartilage. Knee Surgery, Sports Traumatology, Arthroscopy, 21(8), 1737-1750. doi:10.1007/s00167-012-2148-6Deplaine, H., Lebourg, M., Ripalda, P., Vidaurre, A., Sanz-Ramos, P., Mora, G., … Gallego Ferrer, G. (2012). Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 101B(1), 173-186. doi:10.1002/jbm.b.32831Ho, M.-H., Kuo, P.-Y., Hsieh, H.-J., Hsien, T.-Y., Hou, L.-T., Lai, J.-Y., & Wang, D.-M. (2004). Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, 25(1), 129-138. doi:10.1016/s0142-9612(03)00483-6Alberich-Bayarri, A., Moratal, D., Ivirico, J. L. E., Hernández, J. C. R., Vallés-Lluch, A., Martí-Bonmatí, L., … Salmerón-Sánchez, M. (2009). Microcomputed tomography and microfinite element modeling for evaluating polymer scaffolds architecture and their mechanical properties. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 91B(1), 191-202. doi:10.1002/jbm.b.31389Mollica, F., Ventre, M., Sarracino, F., Ambrosio, L., & Nicolais, L. (2007). Implicit constitutive equations in the modeling of bimodular materials: An application to biomaterials. Computers & Mathematics with Applications, 53(2), 209-218. doi:10.1016/j.camwa.2006.02.020TURNER, C. H. (2006). Bone Strength: Current Concepts. Annals of the New York Academy of Sciences, 1068(1), 429-446. doi:10.1196/annals.1346.039HARLEY, B., LEUNG, J., SILVA, E., & GIBSON, L. (2007). Mechanical characterization of collagen–glycosaminoglycan scaffolds. Acta Biomaterialia, 3(4), 463-474. doi:10.1016/j.actbio.2006.12.009DiSilvestro, M. R., & Suh, J.-K. F. (2001). A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. Journal of Biomechanics, 34(4), 519-525. doi:10.1016/s0021-9290(00)00224-4Jurvelin, J. S., Buschmann, M. D., & Hunziker, E. B. (1997). Optical and mechanical determination of poisson’s ratio of adult bovine humeral articular cartilage. Journal of Biomechanics, 30(3), 235-241. doi:10.1016/s0021-9290(96)00133-9Korhonen, R. ., Laasanen, M. ., Töyräs, J., Rieppo, J., Hirvonen, J., Helminen, H. ., & Jurvelin, J. . (2002). Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. Journal of Biomechanics, 35(7), 903-909. doi:10.1016/s0021-9290(02)00052-0Acosta Santamaría, V. A., García Aznar, J. M., Ochoa, I., & Doblare, M. (2012). Effect of Sample Pre-Contact on the Experimental Evaluation of Cartilage Mechanical Properties. Experimental Mechanics, 53(6), 911-917. doi:10.1007/s11340-012-9698-xOchoa, I., Sanz-Herrera, J. A., García-Aznar, J. M., Doblaré, M., Yunos, D. M., & Boccaccini, A. R. (2009). Permeability evaluation of 45S5 Bioglass®-based scaffolds for bone tissue engineering. Journal of Biomechanics, 42(3), 257-260. doi:10.1016/j.jbiomech.2008.10.030Chor, M. V., & Li, W. (2006). A permeability measurement system for tissue engineering scaffolds. Measurement Science and Technology, 18(1), 208-216. doi:10.1088/0957-0233/18/1/026Al-Munajjed, A. A., Hien, M., Kujat, R., Gleeson, J. P., & Hammer, J. (2008). Influence of pore size on tensile strength, permeability and porosity of hyaluronan-collagen scaffolds. Journal of Materials Science: Materials in Medicine, 19(8), 2859-2864. doi:10.1007/s10856-008-3422-5Sanz-Herrera, J. A., Kasper, C., van Griensven, M., Garcia-Aznar, J. M., Ochoa, I., & Doblare, M. (2008). Mechanical and flow characterization of Sponceram® carriers: Evaluation by homogenization theory and experimental validation. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 87B(1), 42-48. doi:10.1002/jbm.b.31065Truscello, S., Kerckhofs, G., Van Bael, S., Pyka, G., Schrooten, J., & Van Oosterwyck, H. (2012). Prediction of permeability of regular scaffolds for skeletal tissue engineering: A combined computational and experimental study. Acta Biomaterialia, 8(4), 1648-1658. doi:10.1016/j.actbio.2011.12.021Castilla-Cortázar, I., Más-Estellés, J., Meseguer-Dueñas, J. M., Escobar Ivirico, J. L., Marí, B., & Vidaurre, A. (2012). Hydrolytic and enzymatic degradation of a poly(ε-caprolactone) network. Polymer Degradation and Stability, 97(8), 1241-1248. doi:10.1016/j.polymdegradstab.2012.05.038Tsuji, H., & Ikada, Y. (1996). Blends of isotactic and atactic poly(lactide)s: 2. Molecular-weight effects of atactic component on crystallization and morphology of equimolar blends from the melt. Polymer, 37(4), 595-602. doi:10.1016/0032-3861(96)83146-6Lebourg, M., Antón, J. S., & Ribelles, J. L. G. (2008). Porous membranes of PLLA–PCL blend for tissue engineering applications. European Polymer Journal, 44(7), 2207-2218. doi:10.1016/j.eurpolymj.2008.04.033Hernández Sánchez, F., Molina Mateo, J., Romero Colomer, F. J., Salmerón Sánchez, M., Gómez Ribelles, J. L., & Mano, J. F. (2005). Influence of Low-Temperature Nucleation on the Crystallization Process of Poly(l-lactide). Biomacromolecules, 6(6), 3283-3290. doi:10.1021/bm050323tHöglund, A., Odelius, K., Hakkarainen, M., & Albertsson, A.-C. (2007). Controllable Degradation Product Migration from Cross-Linked Biomedical Polyester-Ethers through Predetermined Alterations in Copolymer Composition. Biomacromolecules, 8(6), 2025-2032. doi:10.1021/bm070292xPersenaire, O., Alexandre, M., Degée, P., & Dubois, P. (2001). Mechanisms and Kinetics of Thermal Degradation of Poly(ε-caprolactone). Biomacromolecules, 2(1), 288-294. doi:10.1021/bm005631
    corecore