132 research outputs found
Recommended from our members
Keyframe Sampling, Optimization, and Behavior Integration: A New Longest Kick in the RoboCup 3D Simulation League
Even with improvements in machine learning enabling robots to
quickly optimize and perfect their skills, developing a seed skill from
which to begin an optimization remains a necessary challenge for large
action spaces. This thesis proposes a method for creating and using
such a seed by i) observing the effects of the actions of another robot,
ii) further optimizing the skill starting from this seed, and iii) em-
bedding the optimized skill in a full behavior. Called KSOBI, this
method is fully implemented and tested in the complex RoboCup 3D
simulation domain. The main result is a kick that, to the best of
our knowledge, kicks the ball farther in this simulator than has been
previously documented.Computer Science
Effect of the Heat Flux Density on the Evaporation Rate of a Distilled Water Drop
This paper presents the experimental dependence of the evaporation rate of a nondeaerated distilled water drop from the heat flux density on the surfaces of non-ferrous metals (copper and brass). A drop was placed on a heated substrate by electronic dosing device. To obtain drop profile we use a shadow optical system; drop symmetry was controlled by a high-speed video camera. It was found that the evaporation rate of a drop on a copper substrate is greater than on a brass. The evaporation rate increases intensively with raising volume of a drop. Calculated values of the heat flux density and the corresponding evaporation rates are presented in this work. The evaporation rate is found to increase intensively on the brass substrate with raising the heat flux density
Keyframe Sampling, Optimization, and Behavior Integration: Towards Long-Distance Kicking in the RoboCup 3D Simulation League
Abstract. Even with improvements in machine learning enabling robots to quickly optimize and perfect their skills, developing a seed skill from which to begin an optimization remains a necessary challenge for large action spaces. This paper proposes a method for creating and using such a seed by i) observing the effects of the actions of another robot, ii) further optimizing the skill starting from this seed, and iii) embedding the optimized skill in a full behavior. Called KSOBI, this method is fully implemented and tested in the complex RoboCup 3D simulation domain. To the best of our knowledge, the resulting skill kicks the ball farther in this simulator than has been previously documented.
A two-step mechanism for epigenetic specification of centromere identity and function
The basic determinant of chromosome inheritance, the centromere, is specified in many eukaryotes by an epigenetic mark. Using gene targeting in human cells and fission yeast, chromatin containing the centromere-specific histone H3 variant CENP-A is demonstrated to be the epigenetic mark that acts through a two-step mechanism to identify, maintain and propagate centromere function indefinitely. Initially, centromere position is replicated and maintained by chromatin assembled with the centromere-targeting domain (CATD) of CENP-A substituted into H3. Subsequently, nucleation of kinetochore assembly onto CATD-containing chromatin is shown to require either the amino- or carboxy-terminal tail of CENP-A for recruitment of inner kinetochore proteins, including stabilizing CENP-B binding to human centromeres or direct recruitment of CENP-C, respectively.National Institutes of Health grant: (GM 074150); Ludwig Institute for Cancer Research; European Molecular Biology Organization (EMBO) long-term fellowship
Epigenetic centromere specification directs aurora B accumulation but is insufficient to efficiently correct mitotic errors
Aurora B activity is inhibited when centromeric repeat sequences are absent, although kinetochores can still assemble
Centromere Protein B Null Mice are Mitotically and Meiotically Normal but Have Lower Body and Testis Weights
CENP-B is a constitutive centromere DNA-binding protein that is conserved in a number of mammalian species and in yeast. Despite this conservation, earlier cytological and indirect experimental studies have provided conflicting evidence concerning the role of this protein in mitosis. The requirement of this protein in meiosis has also not previously been described. To resolve these uncertainties, we used targeted disruption of the Cenpb gene in mouse to study the functional significance of this protein in mitosis and meiosis. Male and female Cenpb null mice have normal body weights at birth and at weaning, but these subsequently lag behind those of the heterozygous and wild-type animals. The weight and sperm content of the testes of Cenpb null mice are also significantly decreased. Otherwise, the animals appear developmentally and reproductively normal. Cytogenetic fluorescence-activated cell sorting and histological analyses of somatic and germline tissues revealed no abnormality. These results indicate that Cenpb is not essential for mitosis or meiosis, although the observed weight reduction raises the possibility that Cenpb deficiency may subtly affect some aspects of centromere assembly and function, and result in reduced rate of cell cycle progression, efficiency of microtubule capture, and/or chromosome movement. A model for a functional redundancy of this protein is presented
Epigenetic engineering: histone H3K9 acetylation is compatible with kinetochore structure and function
Human kinetochores are transcriptionally active, producing very low levels of transcripts of the underlying alpha-satellite DNA. However, it is not known whether kinetochores can tolerate acetylated chromatin and the levels of transcription that are characteristic of housekeeping genes, or whether kinetochore-associated 'centrochromatin', despite being transcribed at a low level, is essentially a form of repressive chromatin. Here, we have engineered two types of acetylated chromatin within the centromere of a synthetic human artificial chromosome. Tethering a minimal NF-κB p65 activation domain within kinetochore-associated chromatin produced chromatin with high levels of histone H3 acetylated on lysine 9 (H3K9ac) and an ~10-fold elevation in transcript levels, but had no substantial effect on kinetochore assembly or function. By contrast, tethering the herpes virus VP16 activation domain produced similar modifications in the chromatin but resulted in an ~150-fold elevation in transcripts, approaching the level of transcription of an endogenous housekeeping gene. This rapidly inactivated kinetochores, causing a loss of assembled CENP-A and blocking further CENP-A assembly. Our data reveal that functional centromeres in vivo show a remarkable plasticity - kinetochores tolerate profound changes to their chromatin environment, but appear to be critically sensitive to the level of centromeric transcription. © 2012
- …
