49 research outputs found

    A Single-step Process to Convert Karanja Oil to Fatty Acid Methyl Esters Using Amberlyst15 as a Catalys

    Get PDF
    Karanja oil was successfully converted to fatty acid methyl esters (FAME) in a single-step process using Amberlyst15 as a catalyst. A methanol to oil ratio of 6 was required to retain the physical structure of the Amberlyst15 catalyst. At higher methanol to oil ratios, the Amberlyst15 catalyst disintegrated. Disintegration of Amberlyst15 caused an irreversible loss in catalytic activity. This loss in activity was due to a decrease in surface area of Amberlyst15, which was caused by a decrease in its mesoporous volume. It appeared that the chemical nature of Amberlyst15 was unaffected. Reuse of Amberlyst15 with a methanol to oil ratio of 6:1 also revealed a loss in FAME yield. However, this loss in activity was recovered by heating the used Amberlyst15 catalyst to 393 K. The kinetic parameters of a power law model were successfully determined for a methanol to oil ratio of 6:1. An activation energy of 54.9 kJ mol–1 was obtained. This work is licensed under a Creative Commons Attribution 4.0 International License

    Species specific polymerase chain reaction (PCR) assay for identification of pig (Sus domesticus) meat

    Get PDF
    A highly specific single step polymerase chain reaction (PCR) is described for the detection of pig (Sus  domesticus) meat. A PCR assay was successfully optimized for amplification of 629 and 322-bp DNA fragment extracted from pig meat using designed species-specific primer pairs based on mitochondrial D-loop and 12S ribosomal ribonucleic acid (rRNA) gene, respectively. The optimized PCR assay was subsequently validated for its specificity with deoxyribonucleic acid (DNA) extracted from cattle, buffalo, sheep, goat and pig. PCR amplification of target DNA with pig-specific primers was repeated 15 times, with consistent results  observed. The specificity of pig-specific PCR provides a valuable tool for identification of pig meat and to avoid its fraudulent substitution and adulteration.Key words: Pig meat, adulteration, polymerase chain reaction (PCR), mitochondrial D-Loop, 12S ribosomal ribonucleic acid (rRNA) gene

    Age of the Earliest Transgressive Event in the Krishna-Godavari Basin, India: Evidence from Dinoflagellate Cysts and Planktonic Foraminifera Biostratigraphy

    Get PDF
    A combined biostratigraphic study of dinoflagellate cysts and foraminifera was carried out on Early Cretaceous subsurface well cutting sediments from well A (DNG) (2800–2746 m depth) from the Krishna-Godavari Basin, India. The last appearance datum of marker species of dinoflagellate cysts and planktonic foraminifera was considered for the construction of the biostratigraphic framework. The study shows dominance of Early Cretaceous marker dinoflagellate cysts Cassiculosphaeridia magna, Cribroperidinium perforans, Hystrichodinium voigtii, Kleithriasphaeridium eoinodes, and planktonic foraminifera Hedbergella aptiana, Hedbergella mitra, Hedbergella praelippa, Hedbergella tardita, Microhedbergella miniglobularis and Hedbergella mitra species. In addition to this, the dinoflagellate cyst data were compared with the dinoflagellate biozones of Austral and Tethyan provinces. Based on earlier micropalaeontological records from the Krishna-Godavari Basin and the present study, a latest Barremian-early Aptian age has been determined for the earliest marine transgression in the Krishna-Godavari Basin. The early marine incursion during late Barremian-earliest Aptian in the Krishna-Godavari Basin compared to Albian age in Cauvery Basin suggests the opening of east coast from north to south. Citation Statements: 1 0 0 0 Making Science Reliable 1 0 0 0 Citing Publications Supporting Mentioning Contrasting View Citations See all citations for this article at scite.ai scite is a platform that combines deep learning with expert analysis to automatically classify citations as supporting, contrasting or mentioning

    Productivity collapses in the Arabian Sea during glacial cold phases

    Get PDF
    Productivity in the Arabian Sea is one of the highest in the world. It is controlled by seasonally reversing monsoonal wind-driven upwelling of nutrient-rich deeper waters which fuel phytoplankton growth. The detailed history of upwelling-induced productivity in the eastern Arabian Sea is unknown. Here we present paleoproductivity records from a composite sediment core at the millennial scale during the last 80 kyr B. P. These records are based on relative abundance counts of planktonic foraminifera and organic carbon contents, which are shown to mainly vary in concert. The eastern Arabian Sea upwelling-induced productivity was higher in the glacial period than in the Holocene, but it fell repeatedly on millennial timescales. These productivity declines occurred during cold events in the North Atlantic region, with the most pronounced changes prevailing during the Heinrich events. Hence, seasonal monsoon winds that drive upwelling-induced productivity in the east were weak when the North Atlantic was cold. These weak winds resulted in stratification of the water column, comparable to today's Arabian Sea stratification in the intermonsoonal period. Combining the new eastern with published western Arabian Sea results shows that the entire biological factory was severely diminished during the North Atlantic Heinrich events, and the seasonal productivity change in the Arabian Sea monsoon system was reduced with year-round low productivity

    Coupled sea surface temperature-seawater delta O-18 reconstructions in the Arabian Sea at the millennial scale for the last 35 ka

    Get PDF
    Two sediment cores from the western (905; 10.46°9′N, 51.56°4′E, water depth 1586 m) and eastern (SK17; 15°15′N, 72°58′E, water depth 840 m) Arabian Sea were used to study past sea surface temperatures (SST) and seawater δ 18O (δ 18Ow) variations for the past 35 ka. We used coupled Mg/Ca-δ 18O calcite variability in two planktonic foraminiferal species: Globigerinoides ruber, which thrives throughout the year, and Globigerina bulloides, which occurs mainly when surface waters contain high nutrients during upwelling or convective mixing. SSTs in both areas based on Mg/Ca in G. ruber were ∼3 to 4°C lower during the Last Glacial Maximum (LGM; ∼21 ka) than today and the Holocene period. The SST records based on G. bulloides also indicate general cooling, down to 18°C in both areas. SSTs in the western Arabian Sea based on G. bulloides were always lower than those based on G. ruber, indicating the presence of strong seasonal temperature contrast during the Holocene and LGM. We interpret the consistent presence of this seasonal temperature contrast to reflect a combination of seasonal summer upwelling (SW monsoon) and winter convective mixing (NE monsoon) in the western Arabian Sea. In the eastern Arabian Sea, G. bulloides-based SSTs were slightly lower (about 1°C) than G. ruber-based SSTs during the Holocene, indicating the almost absence of a seasonal temperature gradient, similar to today. However, a large seasonal temperature contrast occurred during the LGM which favors the assumption that strong NE monsoon winds forced winter upwelling or convective mixing offshore Goa. SST and δ 18Ow reconstructions reveal evidence of millennial-scale cycles, particularly in the eastern Arabian Sea. Here, the stadial periods (Northern Hemisphere cold periods such as Younger Dryas and Heinrich events) are marked by increasing SSTs and salty sea surface conditions relative to those during the interstadial periods. Indeed, the δ 18Ow record shows evidence of low-saline surface waters during interstadial periods, indicating increased freshwater runoff from the Western Ghats as a consequence of enhanced SW monsoon intensity

    Geochemical imprints of genotypic variants of <i>Globigerina bulloides</i> in the Arabian Sea

    Get PDF
    Planktonic foraminifera record oceanic conditions in their shell geochemistry. Many palaeoenvironmental studies have used fossil planktonic foraminifera to constrain past seawater properties by defining species based on their shell morphology. Recent genetic studies, however, have identified ecologically distinct genotypes within traditionally recognized morphospecies, signaling potential repercussions for palaeoclimate reconstructions. Here we demonstrate how the presence of Globigerina bulloides cryptic genotypes in the Arabian Sea may influence geochemical signals of living and fossil assemblages of these morphospecies. We have identified two distinct genotypes of G. bulloides with either cool water (type-II) or warm water (type-I) temperature preferences in the Western Arabian Sea. We accompany these genetic studies with analyses of Mg/Ca and stable oxygen isotope (δ18O) compositions of individual G. bulloides shells. Both Mg/Ca and δ18O values display bimodal distribution patterns. The distribution of Mg/Ca values cannot be simply explained by seawater parameters, and we attribute it to genotype-specific biological controls on the shell geochemistry. The wide range of δ18O values in the fossil assemblage also suggests that similar controls likely influence this proxy in addition to environmental parameters. However, the magnitude of this effect on the δ18O signals is not clear from our data set, and further work is needed to clarify this. We also discuss current evidence of potential genotype-specific geochemical signals in published data on G. bulloides geochemistry and other planktonic foraminiferal species. We conclude that significant caution should be taken when utilizing G. bulloides geochemistry for paleoclimate reconstruction in the regions with upwelling activity or oceanographic fronts

    COVID-19 trajectories among 57 million adults in England: a cohort study using electronic health records

    Get PDF
    BACKGROUND: Updatable estimates of COVID-19 onset, progression, and trajectories underpin pandemic mitigation efforts. To identify and characterise disease trajectories, we aimed to define and validate ten COVID-19 phenotypes from nationwide linked electronic health records (EHR) using an extensible framework. METHODS: In this cohort study, we used eight linked National Health Service (NHS) datasets for people in England alive on Jan 23, 2020. Data on COVID-19 testing, vaccination, primary and secondary care records, and death registrations were collected until Nov 30, 2021. We defined ten COVID-19 phenotypes reflecting clinically relevant stages of disease severity and encompassing five categories: positive SARS-CoV-2 test, primary care diagnosis, hospital admission, ventilation modality (four phenotypes), and death (three phenotypes). We constructed patient trajectories illustrating transition frequency and duration between phenotypes. Analyses were stratified by pandemic waves and vaccination status. FINDINGS: Among 57 032 174 individuals included in the cohort, 13 990 423 COVID-19 events were identified in 7 244 925 individuals, equating to an infection rate of 12·7% during the study period. Of 7 244 925 individuals, 460 737 (6·4%) were admitted to hospital and 158 020 (2·2%) died. Of 460 737 individuals who were admitted to hospital, 48 847 (10·6%) were admitted to the intensive care unit (ICU), 69 090 (15·0%) received non-invasive ventilation, and 25 928 (5·6%) received invasive ventilation. Among 384 135 patients who were admitted to hospital but did not require ventilation, mortality was higher in wave 1 (23 485 [30·4%] of 77 202 patients) than wave 2 (44 220 [23·1%] of 191 528 patients), but remained unchanged for patients admitted to the ICU. Mortality was highest among patients who received ventilatory support outside of the ICU in wave 1 (2569 [50·7%] of 5063 patients). 15 486 (9·8%) of 158 020 COVID-19-related deaths occurred within 28 days of the first COVID-19 event without a COVID-19 diagnoses on the death certificate. 10 884 (6·9%) of 158 020 deaths were identified exclusively from mortality data with no previous COVID-19 phenotype recorded. We observed longer patient trajectories in wave 2 than wave 1. INTERPRETATION: Our analyses illustrate the wide spectrum of disease trajectories as shown by differences in incidence, survival, and clinical pathways. We have provided a modular analytical framework that can be used to monitor the impact of the pandemic and generate evidence of clinical and policy relevance using multiple EHR sources. FUNDING: British Heart Foundation Data Science Centre, led by Health Data Research UK

    Rehabilitation versus surgical reconstruction for non-acute anterior cruciate ligament injury (ACL SNNAP): a pragmatic randomised controlled trial

    Get PDF
    BackgroundAnterior cruciate ligament (ACL) rupture is a common debilitating injury that can cause instability of the knee. We aimed to investigate the best management strategy between reconstructive surgery and non-surgical treatment for patients with a non-acute ACL injury and persistent symptoms of instability.MethodsWe did a pragmatic, multicentre, superiority, randomised controlled trial in 29 secondary care National Health Service orthopaedic units in the UK. Patients with symptomatic knee problems (instability) consistent with an ACL injury were eligible. We excluded patients with meniscal pathology with characteristics that indicate immediate surgery. Patients were randomly assigned (1:1) by computer to either surgery (reconstruction) or rehabilitation (physiotherapy but with subsequent reconstruction permitted if instability persisted after treatment), stratified by site and baseline Knee Injury and Osteoarthritis Outcome Score—4 domain version (KOOS4). This management design represented normal practice. The primary outcome was KOOS4 at 18 months after randomisation. The principal analyses were intention-to-treat based, with KOOS4 results analysed using linear regression. This trial is registered with ISRCTN, ISRCTN10110685, and ClinicalTrials.gov, NCT02980367.FindingsBetween Feb 1, 2017, and April 12, 2020, we recruited 316 patients. 156 (49%) participants were randomly assigned to the surgical reconstruction group and 160 (51%) to the rehabilitation group. Mean KOOS4 at 18 months was 73·0 (SD 18·3) in the surgical group and 64·6 (21·6) in the rehabilitation group. The adjusted mean difference was 7·9 (95% CI 2·5–13·2; p=0·0053) in favour of surgical management. 65 (41%) of 160 patients allocated to rehabilitation underwent subsequent surgery according to protocol within 18 months. 43 (28%) of 156 patients allocated to surgery did not receive their allocated treatment. We found no differences between groups in the proportion of intervention-related complications.InterpretationSurgical reconstruction as a management strategy for patients with non-acute ACL injury with persistent symptoms of instability was clinically superior and more cost-effective in comparison with rehabilitation management
    corecore