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Abstract Planktonic foraminifera record oceanic conditions in their shell geochemistry. Many
palaeoenvironmental studies have used fossil planktonic foraminifera to constrain past seawater properties
by defining species based on their shell morphology. Recent genetic studies, however, have identified
ecologically distinct genotypes within traditionally recognized morphospecies, signaling potential
repercussions for palaeoclimate reconstructions. Here we demonstrate how the presence of Globigerina
bulloides cryptic genotypes in the Arabian Sea may influence geochemical signals of living and fossil
assemblages of these morphospecies. We have identified two distinct genotypes of G. bulloides with either
cool water (type-II) or warm water (type-I) temperature preferences in the Western Arabian Sea. We
accompany these genetic studies with analyses of Mg/Ca and stable oxygen isotope (δ18O) compositions of
individual G. bulloides shells. Both Mg/Ca and δ18O values display bimodal distribution patterns. The
distribution of Mg/Ca values cannot be simply explained by seawater parameters, and we attribute it to
genotype-specific biological controls on the shell geochemistry. The wide range of δ18O values in the fossil
assemblage also suggests that similar controls likely influence this proxy in addition to environmental
parameters. However, the magnitude of this effect on the δ18O signals is not clear from our data set, and
further work is needed to clarify this. We also discuss current evidence of potential genotype-specific
geochemical signals in published data on G. bulloides geochemistry and other planktonic foraminiferal
species. We conclude that significant caution should be taken when utilizing G. bulloides geochemistry for
paleoclimate reconstruction in the regions with upwelling activity or oceanographic fronts.

1. Introduction

Reconstruction of past oceanic and climatic conditions relies heavily upon the geochemical signatures found
within calcitic shells of planktonic foraminifera [Elderfield and Ganssen, 2000]. Stable isotopic and elemental
composition of foraminiferal shells reflect the physio-chemical environment in which they are formed. In
order to reconstruct past changes in oceanic conditions using geochemical data from foraminiferal calcite,
it is important to obtain a thorough understanding of the relationship between foraminiferal ecology and
shell geochemistry. This relationship is based on the assumption that each foraminiferal morphospecies
represents a genetically continuous species with a unique habitat preference. As molecular genetic charac-
terization of planktonic foraminifera has progressed, it has become clear that the use of the morphospecies
concept may be unsafe. Many cryptic genetic types (or genotypes) have been recognized within modern
planktonic foraminiferal morphospecies which have distinct biogeographic distributions related to trophic
regimes [de Vargas et al., 1999; Seears et al., 2012] or surface water properties [de Vargas et al., 2001; de
Vargas et al., 2002; Darling et al., 2004; Darling et al., 2007; Darling and Wade, 2008; Seears et al., 2012].
Many morphologically defined species therefore represent a mixed assemblage of genotypes [Kucera and
Darling, 2002]. Some of these genotypes can be distinguished in fossil assemblages by using subtle differ-
ences in their shell morphology. For example, it has been shown that Orbulina universa genotypes have
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different shell thickness and porosities [Morard et al., 2009] and some members of the Globigerinoides ruber
genotype cluster can be morphologically split by using trochospiral coiling height and aperture shape
[Aurahs et al., 2011; Spezzaferri et al., 2015]. In contrast, other genetically diverse morphospecies such as
Globigerina bulloides appear to have genotypes with morphologically similar shells [Darling et al., 2007].

How the presence of cryptic genotypes within planktonic foraminifera affects our ability to utilize their shell geo-
chemistry for past climate reconstructions still remains to be answered. Specific geochemical signatures have
been reported for some morphotypes of Globigerinoides ruber [Steinke et al., 2005; Sadekov et al., 2008;
Antonarakou et al., 2015], which also have been identified as different genotypes [Aurahs et al., 2011]. Generally,
it has been assumed that such geochemical differences are related to their divergent ecological preferences rather
than to variation in the way they incorporate stable isotopes and tracemetals into their shell calcite (i.e., genotype
specific vital effect) [Numberger et al., 2009; Morard et al., 2016]. If this assumption is correct, then an ecological
understanding of the divergent genotypes alone within a planktonic foraminiferal assemblage could prove parti-
cularly informative for paleoceanographic studies. However, the possibility still remains that genotypes may also
express genotype specific geochemical vital effects. If this turns out to be the case, genotype-specific geochemical
calibrations would be required to avoid potential artefacts in reconstructions of past climate.

Globigerina bulloides is one of the most commonly used planktonic foraminifera species in palaeoclimate
reconstructions. It occurs in great abundance in the moderately cool temperate to high latitudes; yet it also
dominates foraminiferal assemblages within tropical upwelling systems, such as the Western Arabian Sea
[Kleijne et al., 1989; Naidu and Malmgren, 1996]. Since G. bulloides inhabits such a wide range of different eco-
systems, it is not surprising that several ecologically distinct small-subunit (SSU) rRNA genotypes have been
recognized within this morphospecies (Figure 1a) [Darling and Wade, 2008; Seears et al., 2012; Morard et al.,
2013]. Phylogenetic analysis indicates that the G. bulloides genotype complex splits principally into twomajor
groups (Type I and Type II) with significantly divergent ecologies [Darling andWade, 2008]. To date, the Type I

Figure 1. Genetic variability and ecological preferences of Globigerina bulloides. (a)Maximum likelihood phylogenetic tree
showing the evolutionary relationships among the G. bulloides genotypes. The tree is based on 669 nucleotides of the SSU
rRNA gene and is rooted on the subtropical G. bulloides Type I genotypes. The boot strap value (expressed as a percentage)
indicates the high level of support for the separation of the warm and cool water genotypes. The scale bar corresponds to a
genetic distance of 1%. (b) Temperature adaptations of G. bulloides genotypes based on global databases of ~750 genetic
sequences from Darling and Wade [2008] and Morard et al. [2013]. Labeling indicates the different G. bulloides genotypes
(see Figure 1a). Warm water lineage genotypes are coloured toward the red spectrum and the cool water lineage
genotypes toward the blue. Note the temperature-specific range of genotypes and the wide-ranging difference
between the ecological adaptations of the coolest IIa and the warmest Ia.
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genotypes (Ia and Ib) have been found in association with warm tropical/subtropical regions and the Type II
genotypes (Types IIa–IIe and IIg) with the cooler transitional and high-latitude regions (Figures 1a and 1b).
There is a considerable degree of genetic distinction between the two major G. bulloides ecological com-
plexes (Type I and Type II). Such deep division suggests that their divergence must have occurred a substan-
tial period of time ago. Recent species delineation studies indicate that the division is well above species
level, since a species status is supported for several of the G. bulloides genotypes in both complexes [Andre
et al., 2014].

In this work, we investigate the relationship between the shell geochemistry of two ecologically distinct
(Figure 1b) genetic variants of Globigerina bulloides, the most challenging morphospecies among the plank-
tonic foraminifera. We use sediment samples and plankton net samples collected in the Arabian Sea to better
understand the effect of G. bulloides cryptic genotypes in interpreting the Mg/Ca and δ18O signatures of
their shells.

2. Material and Methods
2.1. Genetic Study of G. bulloides in the Arabian Sea

To investigate the genetic variability of G. bulloides in the Arabian Sea, we collected samples during period of
upwelling in the western Arabian Sea and also nonupwelling intervals during expeditions on FS Meteor
(September 2007; M74/1b) and RRV Charles Darwin (July 2003, CD 148) in the region (Figure 2a).
Specimens taken during cruise M74/1b were collected at 15 stations along the cruise track (stations 943–
951). Both shallow and deep plankton hauls were carried out at each station accompanied by conductivity,
temperature and depth (CTD) measurements, using a multiplankton sampler (Hydro Bios, Kiel, 50 × 50 cm
opening, 100μm mesh size). Two sets of five depth intervals were used for sampling (0–100m and 0–
700m). Specimens of G. bulloides collected during cruise CD 148 are based on filtering the ships’ nontoxic
water supply through a plankton screen (83μm mesh; pump inlet at 5m depth). Sea surface temperature
and salinity were logged for each station (S2–S5; Figure 2a). Data and material from RRV Charles Darwin
(CD 148) have been previously published in Darling and Wade [2008] and Seears et al. [2012].

The G. bulloides specimens used for genetic analysis were individually picked, digitally imaged, and trans-
ferred into 1.5mL microtubes with 25μL of deoxycholate buffer [Holzmann and Pawlowski, 1996] and incu-
bated for 1 h at 60°C. Amplification by polymerase chain reaction and automated sequencing of an ~1000
base pair region of the terminal 3′ end of the SSU rRNA genewere as described previously [Darling et al., 2000].

Partial SSU rDNA sequences were aligned manually within version 2.2 of the Genetic Data Environment pack-
age [Smith, 1994]. A maximum likelihood phylogenetic tree (employing a general time reversible model and
incorporating gamma-distributed rate-heterogeneity between sites) was constructed within Paup* version
4.0d64 [Swofford, 2003]. Six hundred sixty-nine unambiguously aligned nucleotide sites were utilized in the
phylogenetic analysis, and the phylogeny was rooted on the subtropical G. bulloides Type I genotypes.
Bootstrap resampling (1000 replicates) was employed to assign support to branches in the trees
[Felsenstein, 1985]. The G. bulloides IIf sequence shown in this study (Figures 1a and 1b) is deposited in
GenBank under the accession number KX576651.

2.2. Geochemical Studies of G. Bulloides in the Arabian Sea

Two microanalytical approaches were used to characterize Mg/Ca and δ18O compositions of individual shells
of G.bulloides from the Arabian Sea.

The laser ablation inductively coupled plasma–mass spectrometry (LA-ICP-MS) at the Department of Earth
Science at University of Cambridge was used to measure Mg/Ca ratios of foraminiferal shells from plankton
samples collected during FS Meteor cruise M74/1b. Seventy-five shells of G. bulloides were measured for
Mg/Ca composition. All shells were collected from the top 20m of the water column using the single multinet
(sampling station�949: 16°26′N, 61°15′E; Figure 1) equipped with a net with a mesh width of 150μm. The LA-
ICP-MS system employs an Analyte G2 excimer laser (Teledyne Photon Machines Inc) coupled with a Thermo
i-CapQ ICPMS to measure trace metal profiles through foraminiferal shell walls. Sample preparation and ana-
lyses were carried out following protocols discussed in Eggins et al. [2003] and Sadekov et al. [2008]. The hor-
izontal and vertical resolution of the technique was optimized by ablating small-diameter spots (30 × 30μm)
at four laser pulses per second and 1.6 J/cm2 laser fluence. Between three and four profiles were generated for
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each foraminiferal shell (i.e., oneprofile for each chamber). The ICP-MS is optimizedbyusingNIST610 reference
glass material for maximum sensitivity across Li-Sr mass range andmaintaining ThO/Th<0.5% and Th/U ratio
~1. The isotopes 11B, 24Mg, 32S, 43Ca, 44Ca, 55Mn, 63Cu, 66Zn, 88Sr, 138Ba, and 27Al weremeasured during
each depth profile analysis, which required only 20–50 s to acquire. Data reduction involved initial screening
of spectra for outliers, subtraction of the mean background intensities (measured with the laser turned off)
from the analyzed isotope intensities, internal standardization to 43Ca, and external standardization using
the NIST-SRM610 glass reference material. The signals of Al, Mn, Zn, Cu, and Ba were used to distinguish
surface contamination from foraminiferal calcite following Sadekov et al. [2008]. In-house calcitic standards
eBlue was used to monitor long-term Mg/Ca reproducibility, which was 3.63 ± 0.17mmol/mol (2 SD).

The δ18O of G. bulloides shells was measured by using the continuous-flow isotope ratio mass spectrometry
system at Hokkaido University, which enabled us to determine the δ18O for microvolume carbonate samples
(as low as 0.2μg, which is equal to 0.5 of a G. bulloides chamber) with high precision and accuracy [Ishimura
et al., 2004; Ishimura et al., 2008]. The standard deviations from the analysis of NBS 19 (international standard
reference calcite) analyzed on the same day as the samples was ±0.06‰ for δ18O (n=6). All data are reported
in standard δ notations (δ18O;‰) relative to the Vienna Peedee belemnite standard scale. The weight of the
analyzed shells was calculated by using the volume of CO2 gas evolved during the reaction between calcite
and phosphoric acid [Ishimura et al., 2004]. Although the continuous-flow isotope ratio mass spectrometry
system at Hokkaido University is designed for very low volume samples, in reality combining Mg/Ca and
δ18O measurements on samples from plankton nets without compromising quality of both analyses remains
analytically challenging. The weight of G.bulloides shells used for Mg/Ca analyses range from 0.1 to 2μg,
which is further reduced to 0.05–0.5μg after sample preparation and laser ablation analyses. Therefore, we
used core-top samples for studying variability of δ18O in the G.bulloides population in the Arabian Sea.
Fifty-five shells from the core-top of sediment core SK17 were used for measuring oxygen isotope composi-
tions of the G. bulloides assemblage. Core SK17 (15°15′N, 72°58′E, water depth 840m) was collected in the
Eastern Arabian Sea during research cruise ORV Sagar Kanya in 1999 (Figure 2a). G. bulloides shells were
picked from the 300–350μm size fraction. Each shell was individually cleaned by ultrasonication in methanol
for 1–2min and then rinsed in MiliQ water.

Using sediment sample archives also allows us to combine our δ18O results with data from Ganssen et al.
[2011], in which a similar analytical approach was performed in the Western Arabian Sea. Ganssen et al.

Figure 2. (a) Location map of sampling stations used for geochemical and genetic studies of the G. bulloides populations in the Arabian Sea. Stars are core-top sam-
ples from sediment cores in the Western and Eastern Arabian Sea; triangles are plankton net samples from FS Meteor (943–951) and RRV Charles Darwin (S2–S5)
cruises. Background colours are mean sea surface temperatures from theWOCE data set [Boyer et al., 2013]. (b) Temperature and salinity CTD profiles through the top
250m of the water column during collection of G. bulloides shells at station 949, which were used for Mg/Cameasurements. Note narrow ranges of both temperature
and salinity signals for the top 20m of the water column.
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[2011] used 177 G. bulloides shells from the size fraction 300–355μm from core-top samples (box cores
NIOP902–907 collected in close proximity to the NIOP905 station (Figure 2a). Quoted analytical reproducibil-
ity of a carbonate laboratory standard was 0.15‰, which is comparable with our method. The combined data
set from Ganssen et al. [2011] and our study provide a unique opportunity to study differences in G. bulloides
geochemistry between eutrophic upwelling (Western Arabian Sea) and oligotrophic (Eastern Arabian Sea)
surface waters.

3. Results
3.1. Genetic Variability of Globigerina bulloides

A total of 20 specimens of G. bulloides Type Ia (Figures 1a and 1b) were identified along the cruise tracks of
cruises M74/1b and CD148 in the Arabian Sea (Figure 2a). This genotype is identical to the warm water gen-
otype previously identified in the Coral Sea [Darling and Wade, 2008] (Figure 1a). In the Arabian Sea, Type Ia
was found in both upwelling and also in warm open ocean, nonupwelling waters. An additional G. bulloides
genotype, Type IIf (Figures 1a and 1b), was also identified during cruise M74/1b within a region of late sum-
mer upwelling at stations M74/1b-944, 945, and 947 (Figure 2a). This newly recognized genotype was asso-
ciated with the cooler waters and was not identified in more offshore waters outside the upwelling, though
amplification success was low (n=7). The Type IIf genotype falls within the cool water ecological complex,
clustering with the Atlantic and Southern Ocean cool water G. bulloides genotypes (Figure 1a).

Morphologically, there is little evidence to distinguish the warm Type Ia and the cool Type IIf genotype in the
Arabian Sea. Hence, the question arises whether the shells of these twomodern genotypes of G. bulloides dis-
covered in the surface waters show any distinctive geochemical signatures. The method we used for extract-
ing foraminiferal DNA destroyed the shells and consequently did not allow simultaneous geochemical and
genetic studies from the individual foraminifera. We therefore used plankton net samples collected during
the same cruise and also core-top samples collected during different cruise but in the same study area to
assess whether the geochemical signals of G. bulloides display any bimodality, which can be attributed to
the two genotypes in this region.

3.2. Mg/Ca Variability of Globigerina bulloides From Plankton Assemblages

Seventy-five shells of G. bulloides were extracted from plankton net station M74/1b-949 (Figure 2a). Only the
top water column sample (i.e., from 0 to 20m) was used for Mg/Ca analyses where water temperature around
27.3 ± 0.1°C (1 SD) and salinity near 35.95 ± 0.05 psu (1 SD) prevailed (Figure 2b). The geochemical signals of
G. bulloides from this assemblage should therefore primarily reflect biological influences (i.e., vital effects),
since there was little variation in temperature, salinity, or other environmental factors. Yet Mg/Ca values show
significant variability ranging from a minimum value of 3.78 ± 0.36mmol/mol (1 SE) to a maximum value of
12.5 ± 0.8mmol/mol (1 SE) (Figure 3a). The distribution of Mg/Ca values also show bimodality (two modes),
with low values of clustering around ~5.5mmol/mol and higher values around ~9.5mmol/mol (Figure 3a).
Shapiro-Wilk normality test performed on raw Mg/Ca data returned W= 0.9598 and p= 0.0201, suggesting
strong nonnormality in data distribution [Shapiro and Wilk, 1965]. This nonnormality is clearly visible in distri-
bution of calcification temperatures derived for our Mg/Ca values using the Elderfield and Ganssen [2000] cali-
bration (Figure 3b). The two peaks (or modes) in temperature distribution are centred at 24.3°C and 28°C,
revealing a large temperature difference (~4°C) between the two populations. Despite this bimodality the
average calcification temperatures derived from the Elderfield and Ganssen [2000] calibration is within 1°C
from observed water temperature (i.e., 27.3 ± 0.1°C measured versus 26.2 ± 0.3°C calculated). This accuracy,
however, masks the true bimodal origin of the geochemical signals in living G. bulloides assemblages in
the Arabian Sea which likely reflect two distinct populations.

3.3. Oxygen Isotopes Variability of Globigerina bulloides From Sediment Assemblages

We use core-top samples from sediment cores SK17 and NIOP905 (Figure 2a) to study the distribution of δ18O
values within sediment assemblages of G. bulloides. Site SK17 is located in a region of the Eastern Arabian Sea
(EAS) characterized by stratified oligotrophic surface waters with temperatures above 26°C throughout most
of the year [Boyer et al., 2013]. The distribution of δ18O values of G. bulloides shells from the EAS (site SK17) is
relatively narrow and closely resembles a normal distribution (Figure 4a), which would be consistent with the
assumed presence of single genotype. Shapiro-Wilk normality test for δ18O values returned W= 0.9808 and
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p=0.5338, confirming normal distribution of the data. The mean δ18O value is �2.46‰ with a standard
deviation of 0.4‰ and range of 1.94‰. Using these values, we have reconstructed the temperature range
and habitat depths for these G. bulloides shells usingmodern day Arabian Sea temperature and salinity values
[Boyer et al., 2013] together with empirical calibrations from Bemis et al. [1998] for temperature and for salinity
Delaygue et al. [2001] (Figure 2a). The habitat reconstructions indicate that the majority of individuals lived
between 50 and 90m depth (Figure 4a) with a total range between 0 and 150m. This depth range fits well
with the known ecology of G. bulloides in the Arabian Sea [Peeters et al., 2002].

In contrast to the EAS, pronounced seasonal changes between nonupwelling and upwelling conditions occur
off the coasts of Oman and Somalia in the Western Arabian Sea (WAS) [Sheppard et al., 1992]. The prevailing
south-westerly summer-monsoon winds induce upwelling and drive cold, nutrient-rich waters to the surface.
Surface water temperatures during peak upwelling conditions may fall as low as 14–20°C [Brock et al., 1992].
The sediment population of G. bulloides shells from site NIOP905 in the WAS has a much wider δ18O range of
approximately 4.5‰ in comparison to EAS site SK17 (Figures 4a and 4b). The distribution is negatively
skewed and has two peaks/modes: a major one at approximately �1‰ and a satellite peak at �2.2‰. The
distribution of δ18O values in core NIOP905 also failed the Shapiro-Wilk normality test (W=0.9776 and
p=0.0062), indicating strong nonnormal distribution. Using δ18O values, we have reconstructed the tempera-
ture range and depth habitats of the WAS core top G. bulloides in a similar manner as in the EAS. The recon-
structed temperature range using calibrations from Bemis et al. [1998] and Delaygue et al. [2001] is between
10 and 28°C (Figure 4b). This temperature range implies that G. bulloides shells were formed at ~700m depth
during peak upwelling (August) as well as at the sea surface during nonupwelling conditions (Figure 4b).
Observations in the modern ocean, however, show that G. bulloides inhabits the surface water down to
approximately 200m depth, with a major peak in abundance at the chlorophyll maximum, which varies dur-
ing the year from 0 to 100m [Banse, 1987; Schiebel et al., 1997; Peeters et al., 2002]. This calculation, however, is
subject to calibration selection, and the exact calcification temperatures are difficult to reconstruct (see more
in section 4).

4. Discussion

Our results indicate a bimodal distribution for both the δ18O and Mg/Ca values in the core top and living
assemblages of G. bulloides in the Arabian Sea. This bimodality cannot be explained solely by environmental
signals, which show little covariance with the observed distribution and amplitude of δ18O and Mg/Ca values.
Interpretation of the δ18O values of individual shells from core-top samples is complicated by the fact that

Figure 3. Distribution of Mg/Ca values of G. bulloides plankton assemblage in the Arabian Sea. (a) Individual shell Mg/Ca
values of G. bulloides from plankton net sample 949 in the Western Arabian Sea. The error bars represent the standard
error of the means (±) derived from multiple measurements of individual shells. (b) Distribution of calcification tempera-
tures derived from G. bulloidesMg/Ca values, assuming its temperature dependence as in Elderfield and Ganssen [2000]. The
small horizontal bar represents the observed seawater temperature within the top 20m of the water column during sample
collection.
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Figure 4. Distribution of oxygen stable isotope values of G. bulloides sediment assemblages in the Arabian Sea. (a)
Distribution histogram of the δ18O values of 54 individual G. bulloides shells from the Eastern Arabian Sea (site SK17, see
Figure 2a). Above are the predicted δ18O values of G. bulloides calcite at different depths for the coldest (December, dia-
monds) and warmest (May, squares) months. The calculation is based on empirical calibrations from Bemis et al. [1998]
(temperature) and Delaygue et al. [2001] (salinity) using the temperature and salinity data from World Ocean Atlas [Boyer
et al., 2013] for the Eastern Arabian Sea. Calcite δ18O values are assumed to be in equilibrium with seawater. Note that
relatively narrow distribution corresponds to the 0–200m water interval and agrees well with the known G. bulloides
ecology. (b) Distribution histogram of the δ18O values of 177 individual G. bulloides shells from a series of core tops in the
Western Arabian Sea [Ganssen et al., 2011]. Note the wide range of δ18O values, which is equivalent to approximately 20°C.
Above are the predicted δ18O values of G. bulloides calcite at different depths for the coldest (August, diamonds) and
warmest (May, squares) months for the Western Arabian Sea. The calculation is based on empirical calibrations from Bemis
et al. [1998] (temperature) and Delaygue et al. [2001] (salinity) data from the World Ocean Atlas [Boyer et al., 2013]. Calcite
δ18O values are assumed to be in equilibriumwith seawater. Note that the coldest δ18O values for the Western Arabian Sea
in August predict an improbable calcification depth of 800m when only environmental signals are taken into
consideration.
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they represent an average of the environmental conditions prevailing over the decades of time taken to
accumulate on the seafloor. For example, Ganssen et al. [2011], using a different set of calibrations for
δ18O values, were able to explain all the variance by environmental parameters. In addition, δ18O values
of fossil shells may be affected by postdepositional alteration, which is known to occur in sediment
assemblages [Elderfield and Ganssen, 2000; Rosenthal and Lohmann, 2002]. On the other hand, Mg/Ca
values of shells from living specimens only reflect the environmental signals in the water column occur-
ring immediately prior to sample collection by the biological activity of the foraminiferal cell. The plank-
ton sample used in this study was collected from a well-developed mixed layer with minimal seawater
temperature and salinity variations (Figure 2b). Although there are no direct measurements of seawater
carbon system parameters (i.e., pH and CO3

�2), it is unlikely that the upper 20m of the mixed layer would
have had variations significant enough to cause detectable changes in Mg/Ca values, taking into consid-
eration their limited effect on foraminiferal Mg/Ca values [Russell et al., 2004]. Mg/Ca measurements in
shells from the plankton sample were also obtained from the last three final chambers, limiting vertical
water migration, or advection to only 3 to 6 days of the foraminiferal life span. Therefore, assuming little
variation in seawater parameters, the observed range and bimodal distribution of Mg/Ca values must be
related to biological control of Mg incorporation into G. bulloides calcite.

The biological effect on trace metal incorporation, or so-called vital effect, is used to describe various pro-
cesses potentially related to foraminiferal biology and biomineralization. Little is known about the processes
controlling Mg incorporation into foraminiferal calcite [Bentov and Erez, 2006], and therefore, the vital effect
has been used to describe any influence on Mg/Ca, which cannot be directly explained by physical seawater
parameters. For example, the symbiont-bearing foraminifera have a distinct microenvironment around their
shells. The carbonate ion concentrations and pH of this microenvironment significantly differ from the sur-
rounding seawater, which can be related to the photosynthetic and respiration activity of their algal sym-
bionts. This alteration of foraminiferal microenvironments has been used to explain differences in Mg/Ca
values between planktonic foraminifera and species specific Mg/Ca temperature sensitivity [Eggins et al.,
2004; Barker et al., 2005]. Broadly, however, vital effect can be subdivided into two distinct groups, which
are relevant for this work. The first group comprises factors related to genetically programmed processes,
which are unique for each species or genotype. Examples of these processes include mechanisms controlling
Mg concentration in the calcifying fluid or harboring a specific type of symbiont in its cytoplasm. The second
group includes ontogenetic changes in the processes described above. In other words, these are differences
in Mg incorporation between juvenile and adult foraminifera. Shell size effect on Mg/Ca values of planktonic
foraminifera is a well-known example of such vital effect [Elderfield et al., 2002; Anand and Elderfield, 2005].

Both genetic and ontogenetic vital effects could be potentially used to explain the observed bimodal distri-
bution of Mg/Ca values in the plankton assemblage from the Arabian Sea. The size fraction (>150μm) used to
select the G. bulloides shells for Mg/Ca analyses is large enough to include individuals from significantly dif-
ferent ontogenetic stages. A culturing experiment by Spero and Lea [1996] showed significant differences in
δ18O signals between G. bulloides with 11 and 13 chambers and also differences in δ18O temperature depen-
dences between these ontogenetic stages. To explore the potential effect of shell size on the observed
Mg/Ca distribution, we used plankton net sample 949 and compared shell sizes with individual Mg/Ca values
in the plankton assemblage of G. bulloides (Figure 5). We found no relationship between average shell Mg/Ca
and its size. Moreover, the two populations of Mg/Ca values can be traced across all size fractions (dashed
lines in Figure 5a). However, the average shell Mg/Ca in our study was obtained by combining Mg/Ca signals
from the last three/four chambers of G. bulloides, and therefore, it is hypothetically possible that contributions
of individual chambers to shell average Mg/Ca value could vary across the plankton assemblage producing
the observed bimodal Mg/Ca distribution. To exclude this possibility we adopted the Spero and Lea [1996]
approach to numbering the ontogenetic stages in G. bulloides growth. The chamber number was calculated
based on a growth curve of G. bulloides in culturing experiments [Spero and Lea, 1996]. We measured total
shell size (i.e., with final chamber) and shell size without the final chamber to estimate the comparability
between the growth curve of Spero and Lea [1996] and the shells from our plankton sample. The Spero
and Lea [1996] growth data fit well with our morphometric data from the G. bulloides plankton assemblage
in theWestern Arabian Sea (Figure 5b). Themajority of the shells in our plankton sample represent two stages
of G. bulloides ontogeny. Shells with 11 chambers account for ~45% of the total assemblage, whereas shells
with 12 chambers represent ~50% (Figure 5c). Mg/Ca values of individual chambers show no dependency on
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chamber number nor shell size
(Figure 6). We found no correlation
between the presence of spines or
coiling direction of G. bulloides shells
and their Mg/Ca composition. Crust
layers were also not present on any
G. bulloides shells, which is consistent
with their plankton origin. Hence,
G. bulloides ontogeny does not affect
Mg incorporation into shell calcite in
our study. This leaves a genetic vital
effect as the only potential factor
responsible for the observed bimodal
distribution of Mg/Ca values in the
G. bulloides plankton population from
the Western Arabian Sea.

Biological vital effects or species/
genotype-specific fractionation of
trace metals and oxygen stable iso-
topes has been known since pioneer-
ing work was carried out on
foraminiferal geochemistry. The best
example of this genotype-specific
fractionation is the difference in geo-
chemistry between white and pink
genotypes of Globigerinoides ruber
[Darling et al., 1997; Aurahs et al.,
2011]. Both Mg/Ca and δ18O of these
genotypes/species have significantly
different temperature dependences
and often found to be offset from
each other by constant values
[Deuser et al., 1981; Williams et al.,
1981; Anand et al., 2003; Richey et al.,
2012]. Recent estimates of evolution
rates in the Globigerinoides lineage
put the evolutionary split between
white and pink G. ruber between
4.2Ma and 8.4Ma [Aurahs et al.,
2011]. This time interval therefore
was sufficient to develop a different
genotype/species-specific vital effect.
The rate of evolution through time in
the Globigerina bulloides cluster is
unknown, since all divergences are
morphologically cryptic. However, the
genetic distance (i.e., the number of
mutations) between warm (Type I)
and cool (Type II) genotypes of
G. bulloides is comparable if not greater
than the distance between the pink
and white Type I genotypes/species
of Globigerinoides ruber in the spinose

Figure 5. Shell size variation in the planktonic assemblage of G. bulloides in
the Western Arabian Sea. (a) Crossplot of shell sizes and Mg/Ca values of
individual G. bulloides shells from plankton net sample 949 in the Western
Arabian Sea. Note the lack of any relationship between Mg/Ca values and
shell size and also the two potential subpopulations, outlined by thin dashed
lines. (b) Distribution histogram of G. bulloides shell sizes from plankton net
sample 949 in theWestern Arabian Sea. (c) Ontogeny of G. bulloides as a
function of shell size. The x axis represents shell size including the shell’s final
chamber, and the y axis represents shell size excluding the final chamber. The
greydiamondsaredataproduced in this study for the shells fromplanktonnet
sample949. The squares (red) and triangles (black) aredata from the Speroand
Lea [1996] culturing experiments for 17°C and 21°C seawater temperatures
respectively. The solid grey line is a fit through the Spero and Lea [1996] data
from the 21°C experiment. Note the good agreement between the growth
extension of the Spero and Lea [1996] culturing experiments and the shells
from the Western Arabian Sea plankton assemblage. All three plots in
Figures 5a–5c are on the same horizontal axis.
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planktonic foraminiferal lineage [Seears et al., 2012].
As mentioned above, species delineation studies also
indicate that the warm and cool lineage division is
well above species level, since species status is sup-
ported for several of the Globigerina bulloides geno-
types in both complexes [Andre et al., 2014].
Considering the strong evidence for genetically con-
trolled bimodality in Mg/Ca values in the G. bulloides
population from the Western Arabian Sea, we sug-
gest that this bimodality reflects the presence of both
warm lineage Type Ia and cool lineage Type IIf geno-
types in this area (Figures 1 and 2). These genotypes/
species have distinct and genotype-specific control
on Mg incorporation into shell calcite, which produce
approximately 3mmol/mol difference at seawater
temperatures of 27°C. This difference is equivalent
to ~4°C using current temperature calibrations
[Elderfield and Ganssen, 2000; McConnell and Thunell,
2005]. Such a large discrepancy therefore should be
considered in paleoclimate reconstructions when
using G. bulloides shells from areas inhabited by both
warm (Type I) and cool (Type II) genotypes. Evidence
of bimodality in the sediment population of G.
bulloides in the Western Arabian Sea and particularly
the large range of values may also point to similar
genotype-specific δ18O fractionation of warm (Type
I) and cool (Type II) genotypes (Figure 4). However,
potential postdepositional alteration of δ18O signals
in sediment populations poses greater uncertainty
in linking bimodality of G. bulloides δ18O values to
genotype-specific δ18O fractionation, and further
works are required to clarify this.

G. bulloides is one of the most commonly used planktonic foraminifera for palaeoclimate reconstruc-
tions in transitional and upwelling regions [Elderfield and Ganssen, 2000]. The co-occurrence of geo-
chemical signals from both warm water (Type I) and cool water (Type II) genotypes in deep-sea
sediments causes difficulties in using this species complex for paleoclimate reconstructions, since they
cannot currently be separated by using shell morphology. In addition, published work on G. bulloides
geochemistry from frontal zones and upwelling areas provides mounting evidence on disparities
between seawater properties and G. bulloides geochemistry [Oba and Murayama, 2004; Rogerson
et al., 2004; Anand et al., 2008; Peck et al., 2008; Martinez-Boti et al., 2011; van Raden et al., 2011;
Jonkers et al., 2013]. For example, significant differences in Mg/Ca signals of summer and winter popu-
lations of G. bulloides have been reported in recent studies of plankton net studies in the Western
Arabian Sea [Friedrich et al., 2012]. Friedrich et al. [2012] found that Mg/Ca values of G. bulloides from
cold/upwelling samples agree well with predicted values using the temperature equation of Elderfield
and Ganssen [2000]. Sea surface temperature estimates using summer Mg/Ca values, however, were
4–5°C lower than the predicted values by the same thermometer. The other possible example of
genotype-specific difference in G. bulloides geochemistry is a reported ~0.9–1.1‰ offset between
δ18O values of two G. bulloides morphotypes coexisting in the Southern California Bight [Sautter and
Thunell, 1991; Spero and Lea, 1996; Osborne et al., 2016]. Inconsistencies in G. bulloides geochemistry
in both of these examples can now be readily explained by using results of our work and
genotype-specific Mg and δ18O fractionation of warm (Type I) and cool (Type II) G. bulloides genotypes.
These also provide strong testimony that disparities in G. bulloides geochemistry should not be ignored
in proxy calibrations and palaeoclimate studies.

Figure 6. Mg/Ca values of individual chambers of each
studied G. bulloides shells from plankton assemblage from
Western Arabian Sea (grey diamonds). Squares are averaged
Mg/Ca values for each chamber, and error bars are standard
error of the mean (±). Chamber numeration follows the
approach adapted in Spero and Lea [1996] culturing experi-
ments. Note that the averaged Mg/Ca values of chambers
9–12 are identical within error bars suggesting lack of Mg/Ca
changes during these ontogenic stages of G. bulloides.
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5. Conclusions

Results of this work on the genetic variability of G. bulloides in the Arabian Sea provide an important contri-
bution toward the growing field of foraminiferal genetic diversity and their complex ecological preferences.
Together with geochemical studies and examples from proxy records, our results strongly suggest that the
well-accepted approach of using G. bulloides morphospecies may potentially result in biased interpretation
of past climates in frontal or upwelling ocean regions. We propose that when interpreting palaeorecords
from these regions, possible genotype-specific bias in foraminiferal geochemistry should be taken into
account. We also suggest that detailed studies of ecology and biodiversity of planktonic foraminifera should
be carried out in regions with complex oceanography to assure accuracy of palaeorecords from
these locations.
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