1,757 research outputs found

    Work Analysis with Resource-Aware Session Types

    Full text link
    While there exist several successful techniques for supporting programmers in deriving static resource bounds for sequential code, analyzing the resource usage of message-passing concurrent processes poses additional challenges. To meet these challenges, this article presents an analysis for statically deriving worst-case bounds on the total work performed by message-passing processes. To decompose interacting processes into components that can be analyzed in isolation, the analysis is based on novel resource-aware session types, which describe protocols and resource contracts for inter-process communication. A key innovation is that both messages and processes carry potential to share and amortize cost while communicating. To symbolically express resource usage in a setting without static data structures and intrinsic sizes, resource contracts describe bounds that are functions of interactions between processes. Resource-aware session types combine standard binary session types and type-based amortized resource analysis in a linear type system. This type system is formulated for a core session-type calculus of the language SILL and proved sound with respect to a multiset-based operational cost semantics that tracks the total number of messages that are exchanged in a system. The effectiveness of the analysis is demonstrated by analyzing standard examples from amortized analysis and the literature on session types and by a comparative performance analysis of different concurrent programs implementing the same interface.Comment: 25 pages, 2 pages of references, 11 pages of appendix, Accepted at LICS 201

    Suitability and Transferability of the Resource-Based Habitat Concept: A Test With an Assemblage of Butterflies

    Get PDF
    A functional definition of the habitat-concept based on ecological resources incorporates three interconnected parameters: composition, configuration, and availability of the resources. The intersection of those parameters represents the functional habitat of a given population or species. Resource composition refers to the co-occurrence of the resources required by each individual to complete its life cycle. Resource configuration refers both to the way individual resources are spatially distributed within the habitat and the way all the resources are organized in the habitat space. Resource availability refers to the accessibility and procureability of resources. Variation in these variables is predicted to influence the demography of the population. To test the suitability of this definition and its transferability across landscapes, we first conducted a very detailed study on habitat and resource use of five butterfly species within a large nature reserve. Second, we conducted a larger-scale study, focusing on metapopulations of two species. We monitored demography for each species and tested whether its variation can be explained by (1) the vegetation type, (2) the vegetation composition or (3) the availability and configuration of the species-specific ecological resources. To confirm that resource availability and configuration reflect habitat quality, we also assessed their impacts on individual morphology. Whatever the investigated spatial scale, our results quantitatively demonstrate the overall better performance of the resource-based habitat approach compared to other most commonly used approaches. Our analysis allowed us to assess the relative importance of each ecological resource in terms of both their availability and organization relative to the species' abundance, demography and individual fitness measures. Resource availability did not play the predominant role in defining habitat quality as it was in most cases overruled by resource organization. Finally, we confirmed the between-population transferability of the habitat definition and quality estimates while adopting a resource-based habitat approach. Our study clearly demonstrates the suitability of the resource-based definition of the habitat. Therefore, we argue that this approach should be favored for species of conservation concern. Although most conclusions so far have emerged from butterfly studies, the resource-based definition of the habitat should also be ecologically relevant to many other organisms

    Observation of Antiferroelectric Domain Walls in a Uniaxial Hyperferroelectric

    Full text link
    Ferroelectric domain walls are a rich source of emergent electronic properties and unusual polar order. Recent studies showed that the configuration of ferroelectric walls can go well beyond the conventional Ising-type structure. N\'eel-, Bloch-, and vortex-like polar patterns have been observed, displaying strong similarities with the spin textures at magnetic domain walls. Here, we report the discovery of antiferroelectric domain walls in the uniaxial ferroelectric Pb5_{5}Ge3_{3}O11_{11}. We resolve highly mobile domain walls with an alternating displacement of Pb atoms, resulting in a cyclic 180∘^{\circ} flip of dipole direction within the wall. Density functional theory calculations reveal that Pb5_{5}Ge3_{3}O11_{11} is hyperferroelectric, allowing the system to overcome the depolarization fields that usually suppress antiparallel ordering of dipoles along the longitudinal direction. Interestingly, the antiferroelectric walls observed under the electron beam are energetically more costly than basic head-to-head or tail-to-tail walls. The results suggest a new type of excited domain-wall state, expanding previous studies on ferroelectric domain walls into the realm of antiferroic phenomena

    Ecological and socioeconomic impacts of invasive alien species in island ecosystems

    Get PDF
    Minimizing the impact of invasive alien species (IAS) on islands and elsewhere requires researchers to provide cogent information on the environmental and socioeconomic consequences of IAS to the public and policy makers. Unfortunately, this information has not been readily available owing to a paucity of scientific research and the failure of the scientific community to make their findings readily available to decision makers. This review explores the vulnerability of islands to biological invasion, reports on environmental and socioeconomic impacts of IAS on islands and provides guidance and information on technical resources that can help minimize the effects of IAS in island ecosystems. This assessment is intended to provide a holistic perspective on island-IAS dynamics, enable biologists and social scientists to identify information gaps that warrant further research and serve as a primer for policy makers seeking to minimize the impact of IAS on island systems. Case studies have been selected to reflect the most scientifically-reliable information on the impacts of IAS on islands. Sufficient evidence has emerged to conclude that IAS are the most significant drivers of population declines and species extinctions in island ecosystems worldwide. Clearly, IAS can also have significant socioeconomic impacts directly (for example human health) and indirectly through their effects on ecosystem goods and services.These impacts are manifest at all ecological levels and affect the poorest, as well as richest, island nations. The measures needed to prevent and minimize the impacts of IAS on island ecosystems are generally known. However, many island nations and territories lack the scientific and technical information, infrastructure and human and financial resources necessary to adequately address the problems caused by IAS. Because every nation is an exporter and importer of goods and services, every nation is also a facilitator and victim of the invasion of alien species.Wealthy nations therefore need to help raise the capacity of island nations and territories to minimize the spread and impact of IAS

    The role of law in global value chains: a research manifesto

    Get PDF
    Most scholars attribute the development and ubiquity of global value chains to economic forces, treating law as an exogenous factor, if at all. By contrast, we assert the centrality of legal regimes and private ordering mechanisms to the creation, structure, geography, distributive effects and governance of Global Value Chains (GVCs), and thereby seek to establish the study of law and GVCs as rich and important terrain for research in its own righ

    The role of law in global value chains: a research manifesto

    Get PDF
    Most scholars attribute the development and ubiquity of global value chains to economic forces, treating law as an exogenous factor, if at all. By contrast, we assert the centrality of legal regimes and private ordering mechanisms to the creation, structure, geography, distributive effects and governance of Global Value Chains (GVCs), and thereby seek to establish the study of law and GVCs as rich and important terrain for research in its own righ

    Computer Microvision for Microelectromechanical Systems

    Get PDF
    Contains table of contents for Section 3 and reports on five research projects.Charles S. Draper Laboratory Contract DL-H-496015Defense Advanced Research Project Agency Grant F30602-97-2-0106W.M. Keck Foundation Career Development ProfessorshipAlfred P. Sloan Foundation Instrumentation Gran

    Responding to global challenges in food, energy, environment and water: Risks and options assessment for decision-Making

    Get PDF
    We analyse the threats of global environmental change, as they relate to food security. First, we review three discourses: (i) ‘sustainable intensification’, or the increase of food supplies without compromising food producing inputs, such as soils and water; (ii) the ‘nexus’ that seeks to understand links across food, energy, environment and water systems; and (iii) ‘resilience thinking’ that focuses on how to ensure the critical capacities of food, energy and water systems are maintained in the presence of uncertainties and threats. Second, we build on these discourses to present the causal, risks and options assessment for decision-making process to improve decision-making in the presence of risks. The process provides a structured, but flexible, approach that moves from problem diagnosis to better risk-based decision-making and outcomes by responding to causal risks within and across food, energy, environment and water systems
    • 

    corecore