193 research outputs found

    Satisfaction and Experience with a Supervised Home-Based Real-Time Videoconferencing Telerehabilitation Exercise Program in People with Chronic Obstructive Pulmonary Disease (COPD)

    Get PDF
    Telerehabilitation, consisting of supervised home-based exercise training via real-time videoconferencing, is an alternative method to deliver pulmonary rehabilitation with potential to improve access. The aims were to determine the level of satisfaction and experience of an eight-week supervised home-based telerehabilitation exercise program using real-time videoconferencing in people with COPD. Quantitative measures were the Client Satisfaction Questionnaire-8 (CSQ-8) and a purpose-designed satisfaction survey. A qualitative component was conducted using semi-structured interviews. Nineteen participants (mean (SD) age 73 (8) years, forced expiratory volume in 1 second (FEV1) 60 (23) % predicted) showed a high level of satisfaction in the CSQ-8 score and 100% of participants reported a high level of satisfaction with the quality of exercise sessions delivered using real-time videoconferencing in participant satisfaction survey. Eleven participants undertook semi-structured interviews. Key themes in four areas relating to the telerehabilitation service emerged: positive virtual interaction through technology; health benefits; and satisfaction with the convenience and use of equipment. Participants were highly satisfied with the telerehabilitation exercise program delivered via videoconferencing.

    Adrenergic gene polymorphisms and cardiovascular risk in the NHLBI-sponsored Women's Ischemia Syndrome Evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adrenergic gene polymorphisms are associated with cardiovascular and metabolic phenotypes. We investigated the influence of adrenergic gene polymorphisms on cardiovascular risk in women with suspected myocardial ischemia.</p> <p>Methods</p> <p>We genotyped 628 women referred for coronary angiography for eight polymorphisms in the α<sub>1A</sub>-, β<sub>1</sub>-, β<sub>2</sub>- and β<sub>3</sub>-adrenergic receptors (<it>ADRA1A</it>, <it>ADRB1, ADRB2</it>, <it>ADRB3</it>, respectively), and their signaling proteins, G-protein β 3 subunit (<it>GNB3</it>) and G-protein α subunit (<it>GNAS</it>). We compared the incidence of death, myocardial infarction, stroke, or heart failure between genotype groups in all women and women without obstructive coronary stenoses.</p> <p>Results</p> <p>After a median of 5.8 years of follow-up, 115 women had an event. Patients with the <it>ADRB1 </it>Gly389 polymorphism were at higher risk for the composite outcome due to higher rates of myocardial infarction (adjusted hazard ratio [HR] 3.63, 95% confidence interval [95%CI] 1.17–11.28; Gly/Gly vs. Arg/Arg HR 4.14, 95%CI 0.88–19.6). The risk associated with <it>ADRB1 </it>Gly389 was limited to those without obstructive CAD (n = 400, P<sub>interaction </sub>= 0.03), albeit marginally significant in this subset (HR 1.71, 95%CI 0.91–3.19). Additionally, women without obstructive CAD carrying the <it>ADRB3 </it>Arg64 variant were at higher risk for the composite endpoint (HR 2.10, 95%CI 1.05–4.24) due to subtle increases in risk for all of the individual endpoints. No genetic associations were present in women with obstructive CAD.</p> <p>Conclusion</p> <p>In this exploratory analysis, common coding polymorphisms in the β<sub>1</sub>- and β<sub>3</sub>-adrenergic receptors increased cardiovascular risk in women referred for diagnostic angiography, and could improve risk assessment, particularly for women without evidence of obstructive CAD.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov NCT00000554.</p

    Loss of TET2 increases B-1 cell number and IgM production while limiting CDR3 diversity

    Get PDF
    Recent studies have demonstrated a role for Ten-Eleven Translocation-2 (TET2), an epigenetic modulator, in regulating germinal center formation and plasma cell differentiation in B-2 cells, yet the role of TET2 in regulating B-1 cells is largely unknown. Here, B-1 cell subset numbers, IgM production, and gene expression were analyzed in mice with global knockout of TET2 compared to wildtype (WT) controls. Results revealed that TET2-KO mice had elevated numbers of B-1a and B-1b cells in their primary niche, the peritoneal cavity, as well as in the bone marrow (B-1a) and spleen (B-1b). Consistent with this finding, circulating IgM, but not IgG, was elevated in TET2-KO mice compared to WT. Analysis of bulk RNASeq of sort purified peritoneal B-1a and B-1b cells revealed reduced expression of heavy and light chain immunoglobulin genes, predominantly in B-1a cells from TET2-KO mice compared to WT controls. As expected, the expression of IgM transcripts was the most abundant isotype in B-1 cells. Yet, only in B-1a cells there was a significant increase in the proportion of IgM transcripts in TET2-KO mice compared to WT. Analysis of the CDR3 of the BCR revealed an increased abundance of replicated CDR3 sequences in B-1 cells from TET2-KO mice, which was more clearly pronounced in B-1a compared to B-1b cells. V-D-J usage and circos plot analysis of V-J combinations showed enhanced usage of VH11 and VH12 pairings. Taken together, our study is the first to demonstrate that global loss of TET2 increases B-1 cell number and IgM production and reduces CDR3 diversity, which could impact many biological processes and disease states that are regulated by IgM

    A Chandra X-ray Analysis of Abell 1664: Cooling, Feedback and Star Formation in the Central Cluster Galaxy

    Full text link
    The brightest cluster galaxy (BCG) in the Abell 1664 cluster is unusually blue and is forming stars at a rate of ~ 23 M_{\sun} yr^{-1}. The BCG is located within 5 kpc of the X-ray peak, where the cooling time of 3.5x10^8 yr and entropy of 10.4 keV cm^2 are consistent with other star-forming BCGs in cooling flow clusters. The center of A1664 has an elongated, "bar-like" X-ray structure whose mass is comparable to the mass of molecular hydrogen, ~ 10^{10} M_{\sun} in the BCG. We show that this gas is unlikely to have been stripped from interloping galaxies. The cooling rate in this region is roughly consistent with the star formation rate, suggesting that the hot gas is condensing onto the BCG. We use the scaling relations of Birzan et al. 2008 to show that the AGN is underpowered compared to the central X-ray cooling luminosity by roughly a factor of three. We suggest that A1664 is experiencing rapid cooling and star formation during a low-state of an AGN feedback cycle that regulates the rates of cooling and star formation. Modeling the emission as a single temperature plasma, we find that the metallicity peaks 100 kpc from the X-ray center, resulting in a central metallicity dip. However, a multi-temperature cooling flow model improves the fit to the X-ray emission and is able to recover the expected, centrally-peaked metallicity profile.Comment: 15 pages, 13 figure

    What is a Cool-Core Cluster? A Detailed Analysis of the Cores of the X-ray Flux-Limited HIFLUGCS Cluster Sample

    Full text link
    We use the largest complete sample of 64 galaxy clusters (HIghest X-ray FLUx Galaxy Cluster Sample) with available high-quality X-ray data from Chandra, and apply 16 cool-core diagnostics to them, some of them new. We also correlate optical properties of brightest cluster galaxies (BCGs) with X-ray properties. To segregate cool core and non-cool-core clusters, we find that central cooling time, t_cool, is the best parameter for low redshift clusters with high quality data, and that cuspiness is the best parameter for high redshift clusters. 72% of clusters in our sample have a cool core (t_cool < 7.7 h_{71}^{-1/2} Gyr) and 44% have strong cool cores (t_cool <1.0 h_{71}^{-1/2} Gyr). For the first time we show quantitatively that the discrepancy in classical and spectroscopic mass deposition rates can not be explained with a recent formation of the cool cores, demonstrating the need for a heating mechanism to explain the cooling flow problem. [Abridged]Comment: 45 pages, 19 figures, 7 tables. Accepted for publication in A&A. Contact Person: Rupal Mittal ([email protected]

    International Coercion, Emulation and Policy Diffusion: Market-Oriented Infrastructure Reforms, 1977-1999

    Full text link
    Why do some countries adopt market-oriented reforms such as deregulation, privatization and liberalization of competition in their infrastructure industries while others do not? Why did the pace of adoption accelerate in the 1990s? Building on neo-institutional theory in sociology, we argue that the domestic adoption of market-oriented reforms is strongly influenced by international pressures of coercion and emulation. We find robust support for these arguments with an event-history analysis of the determinants of reform in the telecommunications and electricity sectors of as many as 205 countries and territories between 1977 and 1999. Our results also suggest that the coercive effect of multilateral lending from the IMF, the World Bank or Regional Development Banks is increasing over time, a finding that is consistent with anecdotal evidence that multilateral organizations have broadened the scope of the “conditionality” terms specifying market-oriented reforms imposed on borrowing countries. We discuss the possibility that, by pressuring countries into policy reform, cross-national coercion and emulation may not produce ideal outcomes.http://deepblue.lib.umich.edu/bitstream/2027.42/40099/3/wp713.pd

    Myocardial Recovery in Recent Onset Dilated Cardiomyopathy: Role of CDCP1 and Cardiac Fibrosis

    Get PDF
    Background: Dilated cardiomyopathy (DCM) is a major cause of heart failure and carries a high mortality rate. Myocardial recovery in DCM-related heart failure patients is highly variable, with some patients having little or no response to standard drug therapy. A genome-wide association study may agnostically identify biomarkers and provide novel insight into the biology of myocardial recovery in DCM. Methods: A genome-wide association study for change in left ventricular ejection fraction was performed in 686 White subjects with recent-onset DCM who received standard pharmacotherapy. Genome-wide association study signals were subsequently functionally validated and studied in relevant cellular models to understand molecular mechanisms that may have contributed to the change in left ventricular ejection fraction. Results: The genome-wide association study identified a highly suggestive locus that mapped to the 5'-flanking region of the CDCP1 (CUB domain containing protein 1) gene (rs6773435; P=7.12×10-7). The variant allele was associated with improved cardiac function and decreased CDCP1 transcription. CDCP1 expression was significantly upregulated in human cardiac fibroblasts (HCFs) in response to the PDGF (platelet-derived growth factor) signaling, and knockdown of CDCP1 significantly repressed HCF proliferation and decreased AKT phosphorylation. Transcriptomic profiling after CDCP1 knockdown in HCFs supported the conclusion that CDCP1 regulates HCF proliferation and mitosis. In addition, CDCP1 knockdown in HCFs resulted in significantly decreased expression of soluble ST2, a prognostic biomarker for heart failure and inductor of cardiac fibrosis. Conclusions: CDCP1 may play an important role in myocardial recovery in recent-onset DCM and mediates its effect primarily by attenuating cardiac fibrosis
    corecore