68 research outputs found

    Seasonal Consumptive Demand and Prey Use by Stocked Saugeyes in Ohio Reservoirs

    Get PDF
    Community structure and species composition may be strongly influenced by predator-prey interactions resulting from and leading to episodes of population abundance or scarcity. We quantified diets of stocked saugeyes (female walleye Sander vitreus × male sauger S. canadensis) and estimated biomass of their primary prey, gizzard shad Dorosoma cepedianum, in three Ohio reservoirs at quarterly intervals during July 2002-July 2003 to determine whether saugeye consumptive demand could exceed the supply of available gizzard shad prey, resulting in a shift to alternative prey. We incorporated water temperature and saugeye diet composition, growth, and mortality into walleye bioenergetics models, which allowed us to compare estimated prey-specific consumption rates by saugeyes with gizzard shad standing stocks estimated with acoustics. Spring and summer were critical seasons. During spring, gizzard shad biomass was low, saugeye consumptive demand was low, and saugeyes consumed primarily alternative prey. During summer, when age-0 gizzard shad became available as prey, saugeyes consumed similar proportions of gizzard shad and alternative prey. Saugeye cumulative consumptive demand in summer was high and approached the gizzard shad standing stock. However, during fall and winter, gizzard shad supply was adequate to support high (fall) or declining (winter) saugeye consumptive demand. Across reservoirs and seasons, saugeyes consumed alternative prey to varying degrees, primarily sunfishes Lepomis spp., yellow perch Perca flavescens, logperch Percina caprodes, and minnows Pimephales spp. Seasonal asynchrony between saugeye consumptive demand and gizzard shad biomass during spring and summer indicated that a saugeye population with high survival, growth, and consumptive demand will opportunistically increase use of prey other than gizzard shad. The manner in which saugeye predation quantitatively influences these prey species could not be assessed. However, overexploitation of gizzard shad prey appears to be unlikely at current saugeye population sizes, particularly considering the opportunistic use of alternative prey and the high reproductive potential of gizzard shad.Funding for this research was provided by the Ohio Department of Natural Resources, Division of Wildlife; Federal Aid in Sport Fish Restoration Project F-69-P, Fish Management in Ohio; and the Department of Evolution, Ecology, and Organismal Biology at The Ohio State University

    Reversible Non-Volatile Electronic Switching in a Near Room Temperature van der Waals Ferromagnet

    Full text link
    The ability to reversibly toggle between two distinct states in a non-volatile method is important for information storage applications. Such devices have been realized for phase-change materials, which utilizes local heating methods to toggle between a crystalline and an amorphous state with distinct electrical properties. To expand such kind of switching between two topologically distinct phases requires non-volatile switching between two crystalline phases with distinct symmetries. Here we report the observation of reversible and non-volatile switching between two stable and closely-related crystal structures with remarkably distinct electronic structures in the near room temperature van der Waals ferromagnet Fe5−δ_{5-\delta}GeTe2_2. From a combination of characterization techniques we show that the switching is enabled by the ordering and disordering of an Fe site vacancy that results in distinct crystalline symmetries of the two phases that can be controlled by a thermal annealing and quenching method. Furthermore, from symmetry analysis as well as first principle calculations, we provide understanding of the key distinction in the observed electronic structures of the two phases: topological nodal lines compatible with the preserved global inversion symmetry in the site-disordered phase, and flat bands resulting from quantum destructive interference on a bipartite crystaline lattice formed by the presence of the site order as well as the lifting of the topological degeneracy due to the broken inversion symmetry in the site-ordered phase. Our work not only reveals a rich variety of quantum phases emergent in the metallic van der Waals ferromagnets due to the presence of site ordering, but also demonstrates the potential of these highly tunable two-dimensional magnets for memory and spintronics applications

    DAF-16 and Δ9 Desaturase Genes Promote Cold Tolerance in Long-Lived Caenorhabditis elegans age-1 Mutants

    Get PDF
    In Caenorhabditis elegans, mutants of the conserved insulin/IGF-1 signalling (IIS) pathway are long-lived and stress resistant due to the altered expression of DAF-16 target genes such as those involved in cellular defence and metabolism. The three Δ9 desaturase genes, fat-5, fat-6 and fat-7, are included amongst these DAF-16 targets, and it is well established that Δ9 desaturase enzymes play an important role in survival at low temperatures. However, no assessment of cold tolerance has previously been reported for IIS mutants. We demonstrate that long-lived age-1(hx546) mutants are remarkably resilient to low temperature stress relative to wild type worms, and that this is dependent upon daf-16. We also show that cold tolerance following direct transfer to low temperatures is increased in wild type worms during the facultative, daf-16 dependent, dauer stage. Although the cold tolerant phenotype of age-1(hx546) mutants is predominantly due to the Δ9 desaturase genes, additional transcriptional targets of DAF-16 are also involved. Surprisingly, survival of wild type adults following a rapid temperature decline is not dependent upon functional daf-16, and cellular distributions of a DAF-16::GFP fusion protein indicate that DAF-16 is not activated during low temperature stress. This suggests that cold-induced physiological defences are not specifically regulated by the IIS pathway and DAF-16, but expression of DAF-16 target genes in IIS mutants and dauers is sufficient to promote cross tolerance to low temperatures in addition to other forms of stress

    The role of P2 receptors in controlling infections by intracellular pathogens

    Get PDF
    A growing number of studies have demonstrated the importance of ATPe-signalling via P2 receptors as an important component of the inflammatory response to infection. More recent studies have shown that ATPe can also have a direct effect on infection by intracellular pathogens, by modulating membrane trafficking in cells that contain vacuoles that harbour intracellular pathogens, such as mycobacteria and chlamydiae. A conserved mechanism appears to be involved in controlling infection by both of these pathogens, as a role for phospholipase D in inducing fusion between lysosomes and the vacuoles has been demonstrated. Other P2-dependent mechanisms are most likely operative in the cases of pathogens, such as Leishmania, which survive in an acidic phagolysosomal-like compartment. ATPe may function as a ‘danger signal–that alerts the immune system to the presence of intracellular pathogens that damage the host cell, while different intracellular pathogens have evolved enzymes or other mechanisms to inhibit ATPe-mediated signalling, which should, thus, be viewed as virulence factors for these pathogens

    Meat Feeding Restricts Rapid Cold Hardening Response and Increases Thermal Activity Thresholds of Adult Blow Flies, Calliphora vicina (Diptera: Calliphoridae)

    Get PDF
    Virtually all temperate insects survive the winter by entering a physiological state of reduced metabolic activity termed diapause. However, there is increasing evidence that climate change is disrupting the diapause response resulting in non-diapause life stages encountering periods of winter cold. This is a significant problem for adult life stages in particular, as they must remain mobile, periodically feed, and potentially initiate reproductive development at a time when resources should be diverted to enhance stress tolerance. Here we present the first evidence of protein/meat feeding restricting rapid cold hardening (RCH) ability and increasing low temperature activity thresholds. No RCH response was noted in adult female blow flies (Calliphora vicina Robineau-Desvoidy) fed a sugar, water and liver (SWL) diet, while a strong RCH response was seen in females fed a diet of sugar and water (SW) only. The RCH response in SW flies was induced at temperatures as high as 10°C, but was strongest following 3h at 0°C. The CTmin (loss of coordinated movement) and chill coma (final appendage twitch) temperature of SWL females (-0.3 ± 0.5°C and -4.9 ± 0.5°C, respectively) was significantly higher than for SW females (-3.2 ± 0.8°C and -8.5 ± 0.6°C). We confirmed this was not directly the result of altered extracellular K+, as activity thresholds of alanine-fed adults were not significantly different from SW flies. Instead we suggest the loss of cold tolerance is more likely the result of diverting resource allocation to egg development. Between 2009 and 2013 winter air temperatures in Birmingham, UK, fell below the CTmin of SW and SWL flies on 63 and 195 days, respectively, suggesting differential exposure to chill injury depending on whether adults had access to meat or not. We conclude that disruption of diapause could significantly impact on winter survival through loss of synchrony in the timing of active feeding and reproductive development with favourable temperature conditions

    Genome sequence of the tsetse fly (Glossina morsitans):Vector of African trypanosomiasis

    Get PDF
    Tsetse flies are the sole vectors of human African trypanosomiasis throughout sub-Saharan Africa. Both sexes of adult tsetse feed exclusively on blood and contribute to disease transmission. Notable differences between tsetse and other disease vectors include obligate microbial symbioses, viviparous reproduction, and lactation. Here, we describe the sequence and annotation of the 366-megabase Glossina morsitans morsitans genome. Analysis of the genome and the 12,308 predicted protein-encoding genes led to multiple discoveries, including chromosomal integrations of bacterial (Wolbachia) genome sequences, a family of lactation-specific proteins, reduced complement of host pathogen recognition proteins, and reduced olfaction/chemosensory associated genes. These genome data provide a foundation for research into trypanosomiasis prevention and yield important insights with broad implications for multiple aspects of tsetse biology.IS
    • …
    corecore