33 research outputs found

    Impact of Methylation on the Physical Properties of DNA

    Get PDF
    AbstractThere is increasing evidence for the presence of an alternative code imprinted in the genome that might contribute to gene expression regulation through an indirect reading mechanism. In mammals, components of this coarse-grained regulatory mechanism include chromatin structure and epigenetic signatures, where d(CpG) nucleotide steps are key players. We report a comprehensive experimental and theoretical study of d(CpG) steps that provides a detailed description of their physical characteristics and the impact of cytosine methylation on these properties. We observed that methylation changes the physical properties of d(CpG) steps, having a dramatic effect on enriched CpG segments, such as CpG islands. We demonstrate that methylation reduces the affinity of DNA to assemble into nucleosomes, and can affect nucleosome positioning around transcription start sites. Overall, our results suggest a mechanism by which the basic physical properties of the DNA fiber can explain parts of the cellular epigenetic regulatory mechanisms

    Epidemiology of pemphigus in Turkey: One-year prospective study of 220 cases

    Get PDF
    Pemphigus is a group of rare and life-threatening autoimmune blistering diseases of the skin and mucous membranes. Although they occur worldwide, their incidence shows wide geographical variation, and prospective data on the epidemiology of pemphigus are very limited. Objective of this work is to evaluate the incidence and epidemiological and clinical features of patients with pemphigus in Turkey. All patients newly diagnosed with pemphigus between June 2013 and June 2014 were prospectively enrolled in 33 dermatology departments in 20 different provinces from all seven regions of Turkey. Disease parameters including demography and clinical findings were recorded. A total of 220 patients were diagnosed with pemphigus during the 1-year period, with an annual incidence of 4.7 per million people in Turkey. Patients were predominantly women, with a male to female ratio of 1:1.41. The mean age at onset was 48.9 years. Pemphigus vulgaris (PV) was the commonest clinical subtype (n=192; 87.3%), followed by pemphigus foliaceus (n=21; 9.6%). The most common clinical subtype of PV was the mucocutaneous type (n=83; 43.2%). The mean Pemphigus Disease Area Index was 28.14±22.21 (mean ± Standard Deviation).  The incidence rate of pemphigus in Turkey is similar to the countries of South-East Europe, higher than those reported for the Central and Northern European countries and lower than the countries around the Mediterranean Sea and Iran. Pemphigus is more frequent in middle-aged people and is more common in women. The most frequent subtype was PV, with a 9-fold higher incidence than pemphigus foliaceus.   </p

    Volume CXIV, Number 4, November 7, 1996

    Get PDF
    Objective: Turner syndrome (TS) is a chromosomal disorder caused by complete or partial X chromosome monosomy that manifests various clinical features depending on the karyotype and on the genetic background of affected girls. This study aimed to systematically investigate the key clinical features of TS in relationship to karyotype in a large pediatric Turkish patient population.Methods: Our retrospective study included 842 karyotype-proven TS patients aged 0-18 years who were evaluated in 35 different centers in Turkey in the years 2013-2014.Results: The most common karyotype was 45,X (50.7%), followed by 45,X/46,XX (10.8%), 46,X,i(Xq) (10.1%) and 45,X/46,X,i(Xq) (9.5%). Mean age at diagnosis was 10.2±4.4 years. The most common presenting complaints were short stature and delayed puberty. Among patients diagnosed before age one year, the ratio of karyotype 45,X was significantly higher than that of other karyotype groups. Cardiac defects (bicuspid aortic valve, coarctation of the aorta and aortic stenosis) were the most common congenital anomalies, occurring in 25% of the TS cases. This was followed by urinary system anomalies (horseshoe kidney, double collector duct system and renal rotation) detected in 16.3%. Hashimoto's thyroiditis was found in 11.1% of patients, gastrointestinal abnormalities in 8.9%, ear nose and throat problems in 22.6%, dermatologic problems in 21.8% and osteoporosis in 15.3%. Learning difficulties and/or psychosocial problems were encountered in 39.1%. Insulin resistance and impaired fasting glucose were detected in 3.4% and 2.2%, respectively. Dyslipidemia prevalence was 11.4%.Conclusion: This comprehensive study systematically evaluated the largest group of karyotype-proven TS girls to date. The karyotype distribution, congenital anomaly and comorbidity profile closely parallel that from other countries and support the need for close medical surveillance of these complex patients throughout their lifespa

    Nucleosome Positioning in Budding Yeast = Posicionamiento de nucleosomas en Saccharomyces cerevisiae

    Get PDF
    [spa] Nuestro estudio se centra en el posicionamiento de nucleosomas a nivel genómico en levadura, con tal de explorar los factores determinantes de nucleosomas y su plasticidad a lo largo del ciclo celular, así como su relación con la expresión génica basándonos en la cantidad de mARN celular. Encontramos que las regiones libres de nucleosomas (NFRs en inglés) en 5’ y 3’ contienen propiedades físicas inusuales, las cuales son intrínsecas del ADN genómico. Además, demostramos que estas propiedades físicas actúan sinérgicamente con factores de transcripción para definir las NFRs. Una vez la NFR está definida, el posicionamiento de nucleosomas en torno al inicio de transcripción (TSS en inglés) puede predecirse con modelos estadísticos simples. No obstante, también observamos que los nucleosomas son bastante dinámicos en las regiones distales a 5’NFRs y poseen distintos mecanismos reguladores. Nuestro análisis comparativo acerca de la organización de los nucleosomas reveló que la cromatina de hecho exhibe una configuración distinta debido al reordenamiento dependiente de la replicación en fase S, mostrando una mayor sensibilidad de corte por el enzima MNase y un mayor número de nucleosomas deslocalizados a lo largo del genoma. Adicionalmente, observamos características particulares en fase M, donde la cromatina sufre un mayor grado de compactación. Notablemente, estos cambios en la organización de la cromatina son repentinos y agudos y sólo afectan a algunas regiones del genoma, mientras que la mayoría de genes presentan una conservación del patrón de nucleosomas a lo largo del ciclo celular. El análisis detallado en torno a los orígenes de replicación muestra una NFR más ancha en fase G1, debido a la unión del complejo pre-replicatorio. Una vez se activa el origen, los nucleosomas sólo ocupan parcialmente la NFR, debido a la unión constitutiva del complejo de origen de replicación (ORC en inglés). También proporcionamos evidencias de que los orígenes tempranos tienden a tener una organización nucleosomal más ordenada que los tardíos. Finalmente, ilustramos que los nucleosomas centroméricos poseen un posicionamiento idóneo y asimismo, un ensamblaje distinto. Sin embargo, nuestro análisis también mostró la dinámica de los nucleosomas centroméricos a lo largo del ciclo celular, indicando que de hecho su composición puede oscilar a lo largo del ciclo celular. En conjunto, nuestro detallado estudio proporciona una imagen dinámica del posicionamiento de nucleosomas y sus factores determinantes; nuevos indicios respecto a la organización de la cromatina en regiones reguladoras clave en base al ciclo celular y su conexión con la expresión génica; y finalmente, añade una nueva dimensión a la caracterización de los nucleosomas centroméricos.[eng] The nucleosome is the fundamental structural unit of DNA compaction in eukaryotic cells and is formed by the wrapping of 147 bp double stranded DNA around a histone octamer. Nucleosome organization plays a major role in controlling DNA accessibility to regulatory proteins, hence affecting cellular processes such as transcription, DNA replication and repair. Our study focuses on genome-wide nucleosome positioning in S. cerevisiae to explore nucleosome determinants and plasticity throughout the cell cycle and their interplay with gene expression based on cell mRNA abundance. We pursued the contribution of DNA physical properties on nucleosome organization around key regulatory regions such as TSSs and TTSs by analyzing genome-wide MNase-digestion profile of genomic DNA. We also implemented a systematic approach to standardize MNase-Seq experiments by minimizing the noise generated by extrinsic factors to enable an accurate analysis of the underlying principles of nucleosome positioning and dynamics. Moreover, we carried out a large-scale study of nucleosome plasticity throughout the cell cycle and its interplay with transcription based on a comparative analysis among nucleosome maps, gene expression data and MNase sensitivity assays. We then focused on nucleosome organization around DNA replication origins and its possible effect on origin activation. Finally, we sought to characterize centromeric nucleosome composition and its oscillation along cell cycle. During the course of these studies, we found that key regulatory regions such as 5’ and 3’ nucleosome free regions (NFRs) contain unusual physical properties that are intrinsic to genomic DNA. We further demonstrated that DNA physical properties and transcription factors act synergistically to define NFRs, especially in genes with an open promoter structure. Once NFR is defined, the nucleosome positioning around TSSs can be predicted by a simple statistical model, supporting the energy barrier model for nucleosome positioning determination. However, we also observed that nucleosomes are quite dynamic at distal 5’ NFRs and do have distinct regulatory mechanisms. Our comparative analysis of nucleosome organization along cell cycle revealed that chromatin exhibits a distinct configuration due to DNA replication-dependent organization at S phase, showing higher sensitivity to MNase and displaying fuzzier nucleosomes along the genome. Moreover, we observed different features at M phase, where chromatin compaction is the highest and displays a slightly different pattern than in G1 and G2 phases. Interestingly, these changes in chromatin organization are sudden and acute and only affect some regions of the genome, whereas the majority of genes present conserved nucleosome patterns along cell cycle. Our individual gene analysis disclosed that the largest changes take place in cell cycle-dependent genes, indicating the interplay between chromatin and transcription. Moreover, a distinct nucleosome organization at high and low transcription rates further supports this relationship. The detailed analysis around replication origins shows that they display slightly wider NFRs at G1 phase due to pre-Replication complex binding. Once the replication origins are active, nucleosomes partially occupy NFRs up to a certain extent due to constitutive binding of ORC. Moreover, we provided further evidence that early firing origins tend to have more ordered nucleosome organization than late firing origins. Finally we illustrated that centromeric nucleosomes display a perfect positioning, confirming their strong centromeric sequence-dependent recruitment to DNA. The characterization of histone composition under physiological cell conditions suggested that the octameric nucleosome assembly model is favored in centromeres. Yet, our analysis along cell cycle showed centromeric nucleosome dynamics, proposing that its composition might oscillate along cell cycle. Taken together, our accurate study provides a dynamic picture of nucleosome positioning and its determinants; new insights into cell cycle-dependent chromatin organization on key regulatory regions and its interplay with gene expression; and adds a new dimension to the characterization of centromeric nucleosomes

    Critical Reynolds number for Newtonian flow in rectangular ducts

    No full text

    Degradation of Reactive Dyes Using Advanced Oxidation Method

    No full text
    WOS: 000358509300010In this study, the photo-Fenton process was used to identify degradation conditions of Reactive Blue 19 (RB19) and Reactive Red 21 (RR21). The effects of pH, initial H2O2 and FeSO4 concentrations, time, and UV light intensity in determining the degradation rate were studied. The optimal conditions for the degradation of 0.156 mmol L-1 RB19 and 0.036 mmol L-1 RR21 in water were found to be: pH 4, 0.1 mL 30% H2O2 for RB19 and RR21, 0.2 mL 0.5% FeSO4 for RB19 and 0.1 mL 0.5% FeSO4 for RR21, 20 mL volume, and a temperature of 20 degrees C. Optimal conditions were applied to synthetic dye wastewater using small amounts of H2O2 in 1 L for degradation. The degree of degradation efficiency of synthetic wastewater by the photo-Fenton process was found to be > 95% within 10 min.Council of Scientific Research Projects of Marmara University [FEN-BGS-290506-0116]This work was supported by Council of Scientific Research Projects of Marmara University, with FEN-BGS-290506-0116 project number
    corecore