74 research outputs found

    A Neurocomputational Model of Stimulus-Specific Adaptation to Oddball and Markov Sequences

    Get PDF
    Stimulus-specific adaptation (SSA) occurs when the spike rate of a neuron decreases with repetitions of the same stimulus, but recovers when a different stimulus is presented. It has been suggested that SSA in single auditory neurons may provide information to change detection mechanisms evident at other scales (e.g., mismatch negativity in the event related potential), and participate in the control of attention and the formation of auditory streams. This article presents a spiking-neuron model that accounts for SSA in terms of the convergence of depressing synapses that convey feature-specific inputs. The model is anatomically plausible, comprising just a few homogeneously connected populations, and does not require organised feature maps. The model is calibrated to match the SSA measured in the cortex of the awake rat, as reported in one study. The effect of frequency separation, deviant probability, repetition rate and duration upon SSA are investigated. With the same parameter set, the model generates responses consistent with a wide range of published data obtained in other auditory regions using other stimulus configurations, such as block, sequential and random stimuli. A new stimulus paradigm is introduced, which generalises the oddball concept to Markov chains, allowing the experimenter to vary the tone probabilities and the rate of switching independently. The model predicts greater SSA for higher rates of switching. Finally, the issue of whether rarity or novelty elicits SSA is addressed by comparing the responses of the model to deviants in the context of a sequence of a single standard or many standards. The results support the view that synaptic adaptation alone can explain almost all aspects of SSA reported to date, including its purported novelty component, and that non-trivial networks of depressing synapses can intensify this novelty response

    Effect of additional treatment with EXenatide in patients with an Acute Myocardial Infarction (EXAMI): study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Myocardial infarction causes irreversible loss of cardiomyocytes and may lead to loss of ventricular function, morbidity and mortality. Infarct size is a major prognostic factor and reduction of infarct size has therefore been an important objective of strategies to improve outcomes. In experimental studies, glucagon-like peptide 1 and exenatide, a long acting glucagon-like peptide 1 receptor agonist, a novel drug introduced for the treatment of type 2 diabetes, reduced infarct size after myocardial infarction by activating pro-survival pathways and by increasing metabolic efficiency.</p> <p>Methods</p> <p>The EXAMI trial is a multi-center, prospective, randomized, placebo controlled trial, designed to evaluate clinical outcome of exenatide infusion on top of standard treatment, in patients with an acute myocardial infarction, successfully treated with primary percutaneous coronary intervention. A total of 108 patients will be randomized to exenatide (5 ÎŒg bolus in 30 minutes followed by continuous infusion of 20 ÎŒg/24 h for 72 h) or placebo treatment. The primary end point of the study is myocardial infarct size (measured using magnetic resonance imaging with delayed enhancement at 4 months) as a percentage of the area at risk (measured using T2 weighted images at 3-7 days).</p> <p>Discussion</p> <p>If the current study demonstrates cardioprotective effects, exenatide may constitute a novel therapeutic option to reduce infarct size and preserve cardiac function in adjunction to reperfusion therapy in patients with acute myocardial infarction.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01254123">NCT01254123</a></p

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Predictive regularity representations in deviance detection and auditory stream segregation: from conceptual to computational models

    Get PDF
    Predictive accounts of perception have received increasing attention in the past twenty years. Detecting violations of auditory regularities, as reflected by the Mismatch Negativity (MMN) auditory event-related potential, is amongst the phenomena seamlessly fitting this approach. Largely based on the MMN literature, we propose a psychological conceptual framework called the Auditory Event Representation System (AERS), which is based on the assumption that auditory regularity violation detection and the formation of auditory perceptual objects are based on the same predictive regularity representations. Based on this notion, a computational model of auditory stream segregation, called CHAINS, has been developed. In CHAINS, the auditory sensory event representation of each incoming sound is considered for being the continuation of likely combinations of the preceding sounds in the sequence, thus providing alternative interpretations of the auditory input. Detecting repeating patterns allows predicting upcoming sound events, thus providing a test and potential support for the corresponding interpretation. Alternative interpretations continuously compete for perceptual dominance. In this paper, we briefly describe AERS and deduce some general constraints from this conceptual model. We then go on to illustrate how these constraints are computationally specified in CHAINS

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 1

    Get PDF

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Multidisciplinary evidence for early banana (Musa cvs.) cultivation on Mabuyag Island, Torres Strait

    No full text
    Multiproxy archaeobotanical analyses (starch granule, phytolith and microcharcoal) of an abandoned agricultural terrace at Wagadagam on Mabuyag Island, Torres Strait, Australia, document extensive, low-intensity forms of plant management from at least 2,145–1,930 cal yr bp and intensive forms of cultivation at 1,376–1,293 cal yr bp. The agricultural activities at 1,376–1,293 cal yr bp are evidenced from terrace construction, banana (Musa cultivars) cultivation and dramatic transformations to the local palaeoenvironment. The robust evidence for the antiquity of horticulture in western Torres Strait provides an historical basis for understanding the diffusion of cultivation practices and cultivars, most likely from New Guinea. This study also provides a methodological template for the investigation of plant management, potentially including forms of cultivation that were practiced in northern Australia before European colonization

    Prediction and validation of foliage projective cover from Landsat-5 TM and Landsat-7 ETM+ imagery

    No full text
    The detection of long term trends in woody vegetation in Queensland, Australia, from the Landsat-5 TM and Landsat-7 ETM+ sensors requires the automated prediction of overstorey foliage projective cover (FPC) from a large volume of Landsat imagery. This paper presents a comparison of parametric (Multiple Linear Regression, Generalized Linear Models) and machine learning (Random Forests, Support Vector Machines) regression models for predicting overstorey FPC from Landsat-5 TM and Landsat-7 ETM+ imagery. Estimates of overstorey FPC were derived from field measured stand basal area (RMSE 7.26%) for calibration of the regression models. Independent estimates of overstorey FPC were derived from field and airborne LiDAR (RMSE 5.34%) surveys for validation of model predictions. The airborne LiDAR-derived estimates of overstorey FPC enabled the bias and variance of model predictions to be quantified in regional areas. The results showed all the parametric and machine learning models had similar prediction errors (RMSE < 10%), but the machine learning models had less bias than the parametric models at greater than ~60% overstorey FPC. All models showed greater than 10% bias in plant communities with high herbaceous or understorey FPC. The results of this work indicate that use of overstorey FPC products derived from Landsat-5 TM or Landsat-7 ETM+ data in Queensland using any of the regression models requires the assumption of senescent or absent herbaceous foliage at the time of image acquisition
    • 

    corecore