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Abstract 

Predictive accounts of perception have received increasing attention in the past twenty years. 

Detecting violations of auditory regularities, as reflected by the Mismatch Negativity (MMN) 

auditory event-related potential, is amongst the phenomena seamlessly fitting this approach. 

Largely based on the MMN literature, we propose a psychological conceptual framework 

called the Auditory Event Representation System (AERS), which is based on the assumption 

that auditory regularity violation detection and the formation of auditory perceptual objects 

are based on the same predictive regularity representations. Based on this notion, a 

computational model of auditory stream segregation, called CHAINS, has been developed. In 

CHAINS, the auditory sensory event representation of each incoming sound is considered for 

being the continuation of likely combinations of the preceding sounds in the sequence, thus 

providing alternative interpretations of the auditory input. Detecting repeating patterns allows 

predicting upcoming sound events, thus providing a test and potential support for the 

corresponding interpretation. Alternative interpretations continuously compete for perceptual 

dominance. In this paper, we briefly describe AERS and deduce some general constraints 

from this conceptual model. We then go on to illustrate how these constraints are 

computationally specified in CHAINS.  

 

 

 

Keywords: audition, cognition, auditory object, auditory scene analysis, deviance detection, 

predictive modelling, mismatch negativity (MMN)  
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The processing of auditory information serves to discover the distal sources of sensory input 

and to detect potentially important events in the environment. To date, these two important 

functions have been studied relatively independently of each other in the fields of auditory 

regularity violation (deviance) detection (Näätänen 1990) and auditory scene analysis 

(Bregman 1990).  

 

Auditory regularity violation detection (AVD) is concerned with identifying new information 

in a given context, which is of potential interest to the listener. The basic idea is that new 

information requires detailed evaluation because we do not know about it yet (as opposed to 

the redundant repetition of old information). If we learn the regularities inherent in the 

dynamic sensory input, we can readily know what is “old” and detect what is “new”. The 

classic orienting reaction approach (Sokolov 1963) inspired this extremely fruitful field of 

irregularity detection, which established a psychophysiological indicator of the successful 

registration of new information, the Mismatch Negativity (MMN; Näätänen et al. 2011). 

 

Auditory scene analysis (ASA) is concerned with the problem of identifying the concurrently 

active sound sources (Bregman, 1990). This is a considerable challenge for the information 

processing system, because the travelling waves emitted by the different sound sources and 

their echoes mix together before they reach our ears. The crucial task consists in disentangling 

this mixture by grouping (integrating) information that belongs together and separating 

(segregating) information that belongs to different sources. The classic Gestalt principles 

(Köhler 1947) such as the laws of common fate, similarity, and continuity have been 

successfully used as a guideline to study the segregation of the auditory input into coherent 

sound sequences, termed “auditory streams”. Auditory streams are important units of auditory 

perception and, as argued by Winkler and colleagues (Winkler et al, 2009), they also serve as 

units of information storage possessing the defining characteristics of perceptual object 
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representations. That is, representations of auditory streams 1) are temporally persistent; 2) 

encode conjoined auditory features; 3) are separable from other streams; 4) can absorb natural 

variability of the input; and 5) predict upcoming sound events (Winkler et al., 2009). Note 

that auditory streams do not always correspond to a single sound source (Bregman, 1990). 

However, as has often been noted, sound patterns, such as a melody, can also be regarded as 

perceptual objects (Kubovy and Van Walkenburg, 2001; Griffith and Warren, 2004). 

 

Because new information must either be related to previously detected sound sources, or to 

decisions on the presence of new sources, in a general theoretical sense one can assume that 

the detection of new information must be an important factor in auditory scene analysis. A 

more specific link between the two sets of phenomena can be formed by noticing that both 

AVD and ASA require knowledge about the history of stimulation. That is, they both utilize 

some form of representation of the auditory context. The assumption that AVD and ASA 

utilize at least partly overlapping representations of the auditory context is the first 

cornerstone of the following description. The second cornerstone comes from the insight that 

the representations of regularities that define perceptual objects in our environment also allow 

us to predict their future behavior. This is important because, compared to the time from 

which our information originated, any interaction with objects can only occur in the future. 

Therefore, we assume that the representations involved in AVD and ASA are predictive. 

 

In the following, we will briefly describe a conceptual model linking AVD and ASA. In 

essence, we propose the existence of an Auditory Event Representation System (AERS) that 

predictively models the acoustic environment and produces representations of auditory 

objects (Winkler et al. 2009). These representations provide a sensory description of incoming 

sounds that includes their relationship to the context and the current goals of the listener. 

Auditory object representations can be consciously perceived; and they serve as units in 
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various cognitive operations. Although AERS is a “verbal-boxological” model (cf. Jacobs and 

Grainger 1994) and lacks detailed computational specificity, it organizes a vast amount of 

literature and yields various useful constraints for computational models. We will demonstrate 

this in the second half of the paper by describing a specific computational implementation of 

AERS, the CHAINS model (Mill et al. 2011; Mill et al. 2013). Please see Table 1 for a 

definition of key terms and concepts in the two models. 

 

The relation between AERS and the predictive-coding approach to perception 

 

In general, the predictive-modeling account of perception explains perception as the result of 

an interaction between the current sensory information and a model of what we already know 

about the world. This idea is by no means novel. In fact, it originates from Helmholtz’s notion 

of unconscious inferences (Helmholtz 1867), extended in two important ways:  

 

1) At any given moment of time, there are multiple models potentially applicable to the 

current sensory input. Therefore, some mechanism for selecting the optimal model should 

exist. 

2) In order to efficiently represent an ever-changing environment and the arrival of 

unexpected new information, the perceptual system must monitor how well its current 

representations suit the environment, improving them when possible, initiating new 

representations if necessary, and adjusting its selection of dominant representations 

appropriately.  

 

With these two principles in mind, the nature of a predictive (or generative) representation can 

be summarized as follows: The representation generates predictions that take into account 

prior experience and provide probabilistic information about what is likely to appear next in a 
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given context. Consider, for instance, that you have chosen a whistling voice as the ringtone 

for your mobile phone. Now, while you are in a crowd of people, you suddenly perceive a 

whistling voice. At least two explanatory models for this sensory input will be formed by your 

perceptual system: one of them suggesting that your mobile phone is ringing, the other one 

suggesting that someone is actually whistling in the crowd. Let us assume that the “mobile 

phone” model wins the competition initially. This will lead to the prediction that you will 

immediately hear the whistling voice again, which might be so strong that you misperceive a 

second sound event that is only vaguely similar to a whistling sound. To put this in theoretical 

terms, the prediction constrains and biases the interpretation of the sensory input. The actual 

input is compared with the prediction and the difference between the two is computed as 

prediction error. This prediction error, in turn, can be used for adjusting current 

representations and/or for selecting a dominant representation (interpretation) from those 

available (e.g., someone on the street was whistling). 

 

The most complete variant of predictive coding, Friston’s free energy principle (Friston and 

Kiebel 2009b), suggests that a) model selection is based on Bayesian inference and b) there is 

a hierarchy of models with increasing generality, with prediction errors from each level 

propagating upwards in the hierarchy (bottom-up) and models for each level being selected by 

the next higher level (top-down). The goal of the system is to minimize the overall prediction 

error formulated as an entropy type of measure, the free energy. In this hierarchical predictive 

coding model, no level within the hierarchy is of special relevance. This approach aims at 

describing the overall functioning of the perceptual system and can be validated by comparing 

the behavior of computational implementations of the model with human perceptual decisions 

and brain activation measures (in other words, with the outcome of perceptual processes). In 

contrast, psychological descriptions of ASA and AVD focus on the processes leading to the 

conscious perception of sounds.  
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Some recent computational models of MMN (Garrido et al. 2009; Lieder et al. 2013; 

Wacongne et al. 2012) have provided a link between predictive coding and the brain’s 

response to auditory regularity violations. Winkler and Czigler (2012) suggested that the 

representations of auditory regularities involved in AVD may be mapped to models of an 

intermediate level in a predictive coding hierarchy. However, predictive processing has not 

yet been applied systematically to explain ASA. We will do this by specifying the nature of 

the predictive regularity representations that compete to explain the auditory sensory input, 

and by considering how they are initially formed and maintained. This approach fills 

important holes in both bodies of literature: 

 

1) In general, predictive coding studies have rarely addressed the issue of how models are 

initially formed or maintained (see, however, Kiebel et al. 2009). 

2) Models of ASA have largely disregarded bi-/multi-stable perceptual phenomena (for a 

general review, see Schwartz et al. 2012), which has led to the underestimation of the role of 

competition between alternative representations in ASA (see, however, Mill et al. 2013). 

 

In summary, although AERS is generally compatible with predictive coding models (though 

not necessarily with any particular model), it differs from predictive coding in its roots as well 

as in its aims. AERS is not an instantiation of the predictive coding principle for auditory 

deviance detection; instead, AERS describes the common basis for auditory deviance 

detection and stream segregation in terms of the formation and maintenance of the memory 

representations underlying these processes. By AERS, we lay the groundwork for 

computational models describing ASA in terms of continuous competition between 

regularity-based descriptors of auditory event sequences. 
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Table 1: Definition of terms 

Auditory event representation system (AERS): A cognitive system producing auditory 

perceptual event representations from auditory stimulus events. 

 

Auditory perceptual object (or auditory object representation):  A member of the set of 

currently dominant proto-objects that occupies perceptual awareness. ‘Auditory stream’ is a 

similar term but one which is not explicitly identified in terms of predictive representations. 

 

Auditory predictive regularity representation or proto-object: Terms used to describe the 

representation of a sequence of sounds linked together by some detected rule or repeating 

pattern in the form of a generative model. Incoming sounds are checked against the 

predictions of current proto-objects that compete to ‘explain’ them. These representations 

have the potential to become the perceptual objects in conscious awareness, if and when they 

are dominant (i.e., they are in a highly activated state, assumed to indicate their selection as 

the most likely description of the current input). 

 

Auditory stimulus event: A discrete sound, localized in time and generated by some source 

in the external world; i.e. the physical input to our sensory systems (e.g., each of the sounds 

in the particular sequence of sounds generated by our mobile phone when a text message 

arrives). 

 

Auditory stimulus event representation: The integrated description of the perceived features 

of an auditory stimulus event; is shaped by the predictions from AERS. 

 

Auditory perceptual event representation: The description of an auditory stimulus event in 

the brain; an auditory sensory stimulus representation, which is linked to a perceptual object, 

and expanded with the description of its relationship to the auditory and the general context 

(e.g. the text-message sound as it appears in our perception). Auditory perceptual event 

representations are the output of AERS. 

 

CHAINS: A computational model (and its implementation into a Matlab/C-based computer 

program) that incorporates aspects of AERS. It can be used to simulate possible perceptual 

organizations for specific parameters, which – in turn – can be tested experimentally. 

 

Chains: A formal description (within CHAINS) of a sequence of auditory stimulus events 

including their timing. 

 

Initial sound analysis: The early (bottom-up) activation patterns in the auditory system 

caused by each auditory stimulus event; this analysis is not regarded as part of AERS. 

 

Perceptual organization: A complete description of the auditory environment, in terms of 

auditory object representations, as it appears in perception.  

 

 

Auditory Event Representation System (AERS) 
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AERS is characterized by four major constituents, (1) the formation of auditory stimulus 

event representations, (2) the formation of regularity representations that predict subsequent 

sensory input, (3) comparison between the predictions and the sensory input, and (4) 

evaluation of the relevance of the relationship between the incoming sound events and the 

context (Figure 1). AERS is assumed to receive its input from subcortical and cortical levels, 

for example, in the form of spectrotemporal response patterns encoding features such as 

spectral energy maxima. These sound features have to be combined into a unitary auditory 

stimulus event representation that is held accessible for some time. The auditory N1 ERP 

response may (partly) reflect processes engaged in this function (Näätänen and Winkler 1999). 

However, the formation of stimulus event representations does not only rely on input but also 

on the “bias” exerted by the prior context. This context supports the formation of predictive 

representations that are used to compute a-priori probabilities for events embedded in the 

sensory input. These representations capture current auditory regularities such as a pitch 

alternation regularity of two tones (A and B) differing in frequency presented in a regular 

pace (ABABABAB…).  

 

Regularity representations are generative models in the sense that they produce predictions for 

future expected parts of the pattern (i.e. upcoming sounds, such as that the tone following an 

A will be a B). These predictions strongly guide the formation of auditory stimulus event 

representations
1
 of the incoming sounds. As predictive regularity representations have been 

normally active before the occurrence of the current sound, the auditory stimulus event 

representations are always shaped by the a-priori probabilities. Regularity representation is a 

concept that is well known and frequently used in AVD research. Winkler and colleagues 

(2009) suggested that the concept of a stream essentially corresponds to a regularity 

                                                 
1
 These correspond to auditory sensory memory representations of the classical MMN model (e.g. Näätänen, 

1990). We prefer the term auditory stimulus event representations as a stimulus event is represented. 
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representation, although the notion of a regularity is seldom mentioned in this context 

(instead, the term coherence is used to refer to the principles holding together the sounds that 

form a stream) and streams are primarily regarded as perceptual, not as encoding units 

(however, these two aspects are obviously not contradictory). Within AERS, streams are 

regarded as generative models based on detected regularities. Any incoming sound receives 

an interpretation biased towards being a new token of the currently dominant stream (such as 

the continuation of the voice of a speaker). So far, few MMN studies have attempted to 

distinguish predictive processing from alternative explanations (e.g., reevaluating the 

immediate history of stimulation at the arrival of each new sound event; but see Paavilainen et 

al., 2007; Bendixen et al., 2008, 2009). Further, if regularity representations lie at the heart of 

auditory streams, then MMN should only be elicited by sounds belonging to the stream whose 

regularity is violated. Ritter and colleagues’ (2000, 2006) results appear to support this 

assumption. These assumptions of AERS should be further tested by future research.  

 

Predictions are compared with the emerging auditory stimulus event representations created 

for the auditory input. This comparison is not a single unitary process. It is computed at 

multiple anatomical and temporal levels of sound processing. Recent studies have revealed 

that even subcortical areas of the brain can be involved and that some form of deviance 

detection can take place as early as 30 ms from the onset of the violation (for a review, see 

Grimm and Escera 2012). A regularity representation needs to be updated when the incoming 

sound mismatches its prediction; this updating process is reflected by the MMN (Winkler 

2007; Winkler and Czigler 1998; Winkler et al. 2009). According to the proposal of Grimm 

and Escera (2012) of a hierarchical novelty system (see also Escera et al., this issue), 

respective updating processes can possibly also be initiated by the precursors of MMN. 

However, there is evidence that more complex regularities such as feature conjunctions are 

not encoded at these early levels (Althen et al., 2013). 
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If the input matches the prediction, no updating is required. Instead, confidence in the model 

might be strengthened. The repetition positivity (RP) component (Haenschel et al. 2005; 

Costa-Faidella et al. 2011) and the induced gamma-band response (Herrmann et al. 2004) 

might be candidates for brain signals reflecting this matching process. So far no study tested 

whether the early deviance-related responses (as reviewed by Grimm and Escera, 2012) can 

be regarded as signs of prediction error. Likewise, no study tested whether RP is only elicited 

by true repetition or also by non-repeating, but predictable sounds (although Bendixen et al., 

2008, noted an effect similar to RP in a complex MMN paradigm based on predictive 

regularities). Future studies may shed light on whether or not these ERP responses reflect 

processes assumed by AERS. 

 

The outcome of the comparison describes the relation between the auditory stimulus event 

representation of the incoming sound and the prediction(s) stemming from previously 

detected regularities. In fact, several predictive representations may coexist, providing 

alternative descriptions of the auditory scene. Let us again consider the alternating pitch 

regularity ABABAB… Alternation is only one of several possible descriptions of the tone 

sequence. It has been termed the local rule in the literature (Horváth et al. 2001) as it makes 

local predictions regarding the next expected sound (sound n+1); that is, after a tone A tone B 

is predicted, and after B, A is predicted. Another possible regularity that can be derived from 

this sequence is that every second tone is A, while every other sound is B. This regularity 

generates the same sound sequence, but makes its predictions with regard to the second 

upcoming sound (sound n+2), thus termed the global rule. Horváth and colleagues (2001) 

showed that auditory predictive regularity representations for both local and global 

regularities are active in parallel. 
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The alternation regularity example can also be used to illustrate the conceptual similarity of 

streams and predictive regularity representations. When presented with an ‘ABABAB…’ 

stimulus, participants often report hearing an integrated percept; that is, the perception that 

one sound source has produced all the tones by regularly alternating between A and B tones. 

This corresponds to the “n+1” (local) description of the alternation regularity. However, 

participants may also report hearing two separate sound sources: an A-stream, consisting only 

of the ‘A’ sounds, and a B-stream, consisting only of the ‘B’ sounds. This corresponds to the 

“n+2” (global) description of the alternation regularity. Few MMN studies addressed the issue 

whether MMN is only related to the currently dominant (perceived) stream/regularity-

representation or also to the currently non-dominant ones (e.g., Szalárdy et al., in press; 

Winkler et al., 2005, 2006) and the results are somewhat equivocal. This issue requires further 

research. 

 

Having realized this similarity between regularity representations (in AVD research) and 

streams (in ASA research), how can the two perspectives inform each other in a fruitful 

manner? One aspect of the AVD field that can provide new insights for ASA research is the 

issue of how predictive models are formed. The two research fields have opposite approaches 

here: while AVD assumes that a mixture of sounds comes as an incoherent series of events in 

which the regularities must first be discovered, ASA research typically assumes that a mixture 

is by default interpreted as a series of events belonging together (integrated), while the 

formation of more than one representations to describe the input sequence (i.e., segregated) 

only happens after the accumulation of corresponding evidence. However, this integration-by-

default view has recently been challenged by a number of groups (e.g., Deike et al. 2012; 

Denham et al. 2013) and thus the ASA research field must face the question of how any 

stream representation initially develops (Winkler et al. 2009, 2012). It may prove highly 

fruitful to borrow paradigms and findings from AVD research here (e.g., roving standard 
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paradigms as put forward by Bendixen et al. 2007; Cowan et al. 1993; Haenschel et al. 2005; 

Sussman et al. 2007; Winkler et al. 1996). At the same time, one aspect in which AVD may 

benefit from ASA concerns the notion of perceptual organization and the fact that any 

sequence can have multiple interpretations. This bi- or multistability is rarely considered in 

AVD research; usually the sequence of sounds is assumed to be processed as one stream 

throughout. Finally, the notion of a joint representational basis of AVD and ASA has already 

led to a re-consideration of how the two processes are arranged in time. While previous 

studies had concluded that ASA precedes AVD (e.g., Müller et al. 2005; Sussman 2005), 

more recent evidence suggests that this temporal relation is more flexible and depends on the 

strength of the acoustic and regularity cues that are available to the auditory system (Bendixen 

et al. 2012). 

 

After a predictive representation (a regularity representation or stream) has been set up, its 

validity is tested by the occurrence of every new sound event that it predicts. The information 

about whether the prediction was met – and if not, how far the incoming sound deviated from 

it – is passed on to the evaluation process. Here, representations of incoming sounds are 

related to what is currently known about the environment; i.e., the relationship between the 

incoming sound and the context (including the current goals of the listener) is evaluated. We 

propose that the P3a ERP response reflects the outcome of this evaluation process and acts as 

a kind of “significance” marker of sensory events (Horváth et al. 2008; Rinne et al. 2006). 

The resulting information package is the primary output of AERS that is available for further 

processing. We term this an auditory perceptual event representation, because it describes the 

sound event together with its relation to both the auditory and the general context. This is a 

more realistic conceptualization of the minimal “units” of auditory perception than one 

restricted to the physical stimulus. In contrast to classical accounts of sensory memory such as 

echoic memory (Neisser 1967) or (short and long) auditory stores (Cowan 1984; Massaro 
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1972), AERS emphasizes that auditory perceptual event representations usually are more than 

a mental “echo” of the auditory stimulus event and incorporate our knowledge regarding the 

context, our intentions, and even affective affordances (“answer the mobile phone”).  

 

Central to AERS is the proposal that the evaluation process also participates in the search for 

new regularities. If a prediction is not met, this may be due to the fact that the existing 

predictive model is basically valid but an exception with respect to the regularity occurred 

(e.g., one footstep of a walking person sounded a bit different from the ones experienced in 

the past because the person stepped onto some object). In such a case, although the predictive 

regularity representation may need some modification (updating) it should not be discarded as 

a valid description (i.e., the model that we are hearing a series of footsteps can be 

maintained). However, it may also be the case that a new regularity started, that is, a new 

stream came into play, which does not require the updating of the existing regularity 

representation but rather the creation of a new one (e.g., another walking person approaches). 

The former case (i.e. a mismatch between the prediction and the actual continuation of the 

stream) corresponds to a prediction error in predictive coding models. However, the latter (i.e. 

the residue that cannot be explained by current predictive representations) corresponds to 

what Bregman (1990) captured in his “old+new strategy”, a heuristic the auditory system 

utilizes to detect the emergence of new streams.  The information that cannot be accounted for 

by the existing streams (i.e. the residue) can be assessed at this stage and the presence of a 

new sound source can be considered. As noted earlier, comparisons are only done within 

streams (see Ritter et al., 2000, 2006). Sounds that do not belong to the given stream are not 

compared and no deviance (error) signal is generated. This is marked by the “old” (i.e., 

belonging to one of the detected streams) information entering the comparison, whereas 

“new” (belonging to no previously detected stream) information initiates the formation of a 

new regularity representation (see Figure 1). 
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At this point, the description given by AERS diverges from existing predictive coding models, 

which lump together deviation from a prediction and the residue (the ‘old’ and the ‘new’) 

under a single error signal, whereas AERS distinguishes these two prediction errors and 

assigns different follow-up actions to them (i.e., updating an existing vs. forming a new 

auditory predictive regularity representation). The distinction between processing prediction 

errors and the residue may be reflected in ERPs: the former is assumed to elicit the MMN 

(and possibly earlier deviance-detection-related ERP components), whereas the latter may be 

reflected by components notably sensitive to large acoustic changes, such as the P1 and N1. 

Although most known ERP data are compatible with this assumption, it has not been directly 

tested. 

 

Specifying AERS and extracting some computational principles 

 

Formation of proto-objects 

AERS provides a general scheme for forming predictive representations of repeating sound 

patterns. However, it makes no suggestion about how distinct sounds are linked together into 

a coherent representation. Thus the first issue to be addressed by a computational model based 

on AERS is how associations between temporally separate sounds are formed. Intuitively, it 

should be easier to connect similar than highly dissimilar sounds. This principle has been 

termed the law of similarity by the Gestalt school of psychology. However, the Gestalt school 

focused on vision and space, where display items are present side by side. In contrast, in the 

auditory modality, similarity is mediated primarily by time. Thus the principle of similarity 

translates to a temporal version of smooth continuation. That is, similarity is better expressed 

in terms of temporal rate of feature change (Jones 1976; Winkler et al. 2012). This modified 

definition of similarity receives support from numerous studies of auditory stream segregation 
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(for reviews see Moore and Gockel 2002; Moore and Gockel 2012). These results show that 

sounds with even moderate frequency separation may segregate when presented in close 

succession (high rate of change due to the short inter-stimulus interval), whereas sounds with 

much higher frequency separation may be perceptually grouped together if there are longer 

time intervals between them (low rate of change due to the longer inter-stimulus interval). The 

interplay between featural and temporal separation is limited by the temporal constraints of 

the underlying memory processes as well as by the organization of feature spaces in the 

auditory system. Thus a computational implementation must choose parameters in accordance 

with the known perceptual and neurophysiological properties. Recent studies suggest that the 

initial formation of predictive representations (termed “proto-objects” in Mill et al. 2011; cf. 

also Rensink 2000) may primarily rely on the above notion of similarity. Similarity (rate of 

feature change) may also determine the time needed to establish a proto-object, if we assume 

that links are formed with a probability related to their similarity; i.e., more similar sounds are 

more likely to be associated and, therefore, such groups of sounds (and the corresponding 

regularities) are found more quickly. In response to a sequence of sounds, the proto-object 

discovered first will emerge first in perception, and will remain there without competition 

until at least one more alternative proto-object is discovered (cf. Winkler et al. 2012). 

 

The formation of a proto-object, however, needs an additional step beyond establishing links 

between sounds. Sounds linked together by similarity can only affect the processing of 

upcoming sounds when one can draw predictions from them. That is, the building of a proto-

object is only complete once it has shown the potential to predict upcoming sound events 

(because only then can new events be “absorbed” by this proto-object). The simplest way this 

can happen is when a repeating pattern is detected. AERS suggests a more general 

formulation: repetition of an inter-sound relationship, with predictions taking the form of 

value distributions in the parameter space. In implementations, one needs to carefully choose 
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realistic parameters both for what kind of inter-sound relations are handled by the model and 

for limiting the possible length of proto-objects. The auditory system appears to show quite 

surprising constraints in terms of the length of the patterns (number of items within and/or 

duration spanned by the pattern) that can be extracted (e.g., Sussman and Gumenyuk 2005; 

Boh et al. 2011). These constraints need to be (even) more systematically investigated within 

the field of AVD to permit their inclusion within computational models of ASA. 

 

Finally, it is important to note that temporal adjacency is not a necessary prerequisite for 

linking sounds together, as was shown by Bendixen and colleagues (2012b) for AVD and by 

numerous streaming experiments for ASA (e.g., Müller et al. 2005). This is important as it 

allows the auditory system to form parallel representations of alternative proto-objects for the 

same sequence of sounds. Evidence for the auditory system maintaining alternative regularity 

representations for describing the same sound sequence has been obtained in MMN studies 

(Horváth et al. 2001). 

 

Maintenance of proto-objects 

Predictive processes may have a dual role in maintaining proto-object representations. Firstly, 

they may help to improve internal cohesion, by strengthening links between the elements of a 

proto-object. This has been suggested by the results of studies showing that proto-objects 

within which individual sounds or sound features can be predicted by some simple rule (e.g. a 

regularly repeating pattern) are more likely to emerge in perception for longer periods of time 

compared with proto-objects within which sounds are only linked by more diffuse rules (e.g. a 

predictable feature distribution) (Bendixen et al. 2010, 2013). A proto-object with an internal 

predictive rule can be regarded as a proto-object with an internal structure, which allows it to 

provide more precise predictions compared to similar proto-objects with no internal structure. 
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Second, successful predictions should help to maintain a proto-object, whereas failures should 

decrease its chances of survival. AERS suggests that predictive failures reduce the 

effectiveness of the given proto-object in the competition for perceptual dominance. Further, 

it suggests that below some threshold, proto-objects become ineffective and stop affecting the 

processing of incoming sounds. However, they remain in an inactive state, from which they 

can be reactivated for rather long periods of time (Winkler et al. 2002). 

 

Internal cohesion (the strength of associations between its elements) and predictive success 

determine the competitiveness of a proto-object, i.e., its effect on other proto-objects within 

the competition. The moment-to-moment activation levels of the competing proto-objects 

(resulting from these factors) determine which of them (possibly more than one) are part of 

conscious awareness at any given time. 

 

Competition and the emergence of perceptual organizations 

A perceptual organization is a complete description of the auditory environment as it appears 

in perception. For example, the repetitive ‘ABA_’ sequence (van Noorden, 1975) is most 

commonly heard either as a repeating three-tone pattern (i.e., all sounds appearing as a single 

integrated unit) or as two parallel streams of sound, one consisting of the A, the other of the B 

sounds, with one of them appearing in the foreground, the other in the background. Whereas 

in the first case, perceptual organization consists of a single sound object, in the second case, 

perceptual organization consists of two sound objects and the assignment of the foreground. 

(Note that in real-life situations, there are almost always multiple sound objects with some of 

them falling to the background.) As these are alternative perceptual organizations of the same 

sequence, only one of them can appear in perception in any given time. The questions to be 

addressed by a computational model implementing the AERS principles are: 

1) How are perceptual organizations formed from proto-objects? 
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2) What is the unit that enters the competition: the proto-objects or the alternative full 

perceptual organizations? 

3) What form does the competition take? How do the competitors affect each other? 

 

Compatibility/incompatibility between proto-objects has been discussed by Winkler et al. 

(2012; see also Mill et al. 2013), who defined any pair of proto-objects as incompatible if they 

predicted the same sound event (termed collision). This definition is based on the principle of 

exclusive allocation (i.e., that any given sound can be part of only one percept at a time). 

Exclusive allocation mostly holds for auditory perception (see, e.g., Winkler et al. 2006), 

although there are examples of duplex perception (e.g., Fowler and Rosenblum 1990). An 

analysis of the possible forms of competition led to the suggestion of collisions as the basic 

building block of competition between proto-objects: two proto-objects compete with each 

other, when, and only when, they collide. It can be shown that competition based on this 

simple principle implicitly leads to the emergence of perceptual organizations as reported by 

human participants (Mill et al., 2013). 

 

These are then the computational principles extracted from AERS, which underlie the 

development of the computational model called CHAINS (Mill et al. 2011). We now go on to 

describe the principles of CHAINS (for detailed accounts, see Mill et al. 2011, 2013). We 

would like to note that many other computational models of ASA have been formulated 

(Beauvois and Meddis 1991; McCabe and Denham 1997; Wang and Chang 2008), some of 

them also incorporating the concept of predictive processing (e.g., Elhilali and Shamma 2008; 

Grossberg et al. 2004). Nevertheless, we limit ourselves to the description of CHAINS here 

because it is intimately connected to the MMN-based AERS framework. 
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Competition and Cooperation between Proto-Objects in a Model of Auditory Scene 

Analysis (CHAINS) 

 

Formation of proto-objects 

CHAINS is a computational model that allows one to flexibly implement aspects of the AERS 

conceptual framework already outlined. In keeping with the AERS schematic, CHAINS 

receives a temporal pattern of pre-analyzed sound events as input, and explores ways to form 

representations of the embedded regularities. Sounds are encoded throughout CHAINS as 

discrete tokens, which represent a single point in feature space at a specific instant in time. In 

our terminology, tokens within CHAIN relate to auditory stimulus events within AERS. The 

CHAINS algorithm does not access the absolute features of a token. Instead, it measures the 

distance between a token and an incoming stimulus event, and in this way links together 

“constellations” of stimulus events in an unfolding time-feature space to form chains (Figure 

2); i.e. its representations are based on relative representations of feature distributions.  

 

The likelihood of a pattern of stimulus events coalescing into a chain in the first place is 

determined probabilistically according to the interaction of two functions that serve 

complementary roles. One function specifies the probability that an incoming event is added 

to a chain; the other specifies the probability that an incoming event is left out, i.e., skipped 

over. The CHAINS model does not specify what form these functions are to take: this 

decision is deferred to the modeler. Nevertheless, their general influence will be heavily 

informed by the empirical data considered earlier, namely, that it is difficult to link events 

whose features change abruptly; and, conversely, it is difficult not to link events whose 

features change gradually (Figure 2A,B). It is important to emphasize that these two outcomes 

are not mutually exclusive. On the contrary, it is an essential feature of CHAINS that, when 

presented with an input event, each chain has the possibility of splitting into two parallel 
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variants, one that includes the event, and one that excludes it. This principle leads to an 

exponentially-growing set of chains, the proliferation of which is to some extent constrained 

by the low probabilities of perceptually unreasonable linkages. 

 

The simple chain-building scheme we have described lays a concrete groundwork for two key 

principles that appear in the AERS framework, namely, predictive regularity and residual 

input. A predictive regularity is established when a repeating pattern appears in a chain. 

Specifically, if a chain is found to consist of a repeating sequence, it closes to form a loop, 

and thereupon ceases to grow by incorporating incoming events. This is when it becomes a 

proto-object and starts to predict events according to the regularity it encodes (Figure 2C). 

The chain will persist in some form as long as its predictions are correct. At the same time, 

correctly predicting a given input event has immediate implications for the formation of 

further alternative chains: The probability of adding an event to a chain is reduced in 

accordance with how many times this event has been predicted by already existing chains. 

This can be implemented, for instance, by modifying the link probability functions described 

above. The probability reduction naturally gives rise to a graded interpretation of residual 

input: events that are predicted by fewer chains are more likely to be built into existing chains, 

or seed new ones. On the other hand, one can tailor the exclusion probability function to make 

it easier for a chain, when building, to skip over an event that has been predicted (i.e., 

accounted for) by many other chains.  

 

Maintenance of proto-objects 

Not all features of AERS related to the maintenance of proto-objects have been implemented 

in CHAINS up to now. For example, in the current state of CHAINS an incoming sound 

violating a predictive regularity prediction erases the respective chain. In AERS, however, it 

is assumed that it takes some time before a proto-object becomes ineffective. This is 
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suggested from AVD research, where it has been shown that it takes several repetitions of a 

violation in order to abolish the MMN elicited by the violations (Winkler et al. 1996). 

Moreover, AERS claims that regularity representations that no longer affect the processing of 

the incoming sounds can remain in an inactive, “dormant” state, and can be reactivated by a 

single “reminder” (Cowan et al. 1993). This dormant state does not (yet) have an explicit 

computational analogue in CHAINS; it may, however, map onto the chain’s continuously 

varying level of excitation described in the next section. Further aspects that are not yet 

incorporated in the CHAINS model despite existing evidence from MMN/AVD research are 

summarized in the computational description of CHAINS (Mill et al. 2013). Notwithstanding 

these future challenges, we now go on to describe the already implemented aspects of the 

CHAINS model. 

 

The level of excitation of each chain depends on its predictive success and the presence of 

collisions with concurrent chains (proto-objects). CHAINS simulates the dynamics of the 

changing and inter-related excitation levels of all existing chains, which determines its 

predictions of the perceptual organization of the scene. 

 

Competition and the emergence of perceptual organizations 

From the fact that CHAINS is permitted to skip over input events when building chains, it 

follows that most individual chains do not describe the input in its entirety. Moreover, the lack 

of a strict principle of mutual exclusion during the building process implies that the same 

input event can be incorporated into many chains, and the population of chains at a given 

moment will contain a degree of redundancy. A single chain, considered in isolation, 

therefore makes a good candidate for a proto-object, in that it may predict only a fragment of 

the auditory scene, with incomplete coverage but no internal inconsistencies. At the same 

time, the population of chains, considered as a whole, provides an overly exhaustive 
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predictive account of a single scene, with complete coverage but many colliding predictions. 

The ideal circumstances lie between these two extremes: insofar as a scene is predictable, a 

subpopulation of the chains should interleave their predictions so as to account for every 

event exactly once (and the remainder should acquiesce). We refer to these subpopulations as 

perceptual organizations. Of course, for any given scene, there may be more than one 

organization latent within a population. This provides a natural basis for reasoning about 

perceptual multi-stability: if the elements within a population compete directly with each 

other to predict events, then subsets of chains that together predict disjoint aspects of a 

sensory scene will (implicitly) cooperate to form organizations. This is the process by means 

of which CHAINS discovers and maintains organizations. We now examine the details of this 

process. 

 

At the outset, we introduce the notion of a chain’s excitation, a quantity denoted Ei, which can 

fall between zero (not excited) and one (fully excited). In a sense, all chains in the population 

are predictive, but it is the excited chains’ predictions that are taken to account for the events 

in a scene. There are many conceivable contributions to the excitation of chain i, three of 

which are essential. Firstly, the predictive success of the chain, defined as the rate at which it 

makes successful predictions (Si), increases its excitability. Secondly, collisions with any 

other chain, j, defined as the rate at which predictions of chain i collide with those of chain j 

(Cij) multiplied by the latter chain’s excitation (Ej), reduces the chain’s excitability. Thirdly, 

there is a persistent noise term (Ui), which perturbs the chain’s excitability over time. 

This behaviour described above can be captured in a simple system of first-order non-linear 

equations. For each i, 

)const.(  


iU

ij

jijCiSi
i

m UECSE
dt

dE
  

where 1)1()(  xex  is a sigmoid function. Alternatively, the effect of collisions can be 
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mediated indirectly via an inhibitory variable, Ii: 

)const.(  iUiIEiSi
i

m UISE
dt

dE
  

)const.(  
ij

jijCi
i

m ECI
dt

dI
  

The benefit of the latter scheme is that it limits the effect of collisions with many chains by 

introducing saturation. In either case, the α parameters control how successes, collisions and 

noise contribute to the chain’s excitation, and τm is a time constant that controls how rapidly 

excitation evolves. (The terms Si and Cij are dynamic state variables found by leaky 

integration, though for a repeating stationary sequence such as ‘ABA_’, we can treat them as 

though they are constant.) 

 

Consider now how CHAINS might respond to the repeating ‘ABA_’ sequence. Firstly, we 

assume that the building process outlined earlier has assembled three chains: one that predicts 

all three tones (the ‘ABA’ chain), a second that predicts only the As (the ‘A’ chain), and a 

third that predicts only the Bs (the ‘B’ chain). Principally, there are two ways into which these 

chains can organise themselves, given the dynamical system mentioned. 

 

In the first scenario, the excitation of chain ‘ABA’, EABA, is initially high and the excitation of 

the other two chains is low. Chain ‘ABA’ issues three correct predictions per stimulus cycle, 

whereas chains ‘A’ and ‘B’ issue only two and one, respectively. Consequently, chain ‘ABA’ 

will be more excited due to more successful predictions than ‘A’, and ‘A’ more excited than 

‘B’ in turn. In addition, the predictions of ‘ABA’ will regularly collide with those of ‘A’ and 

‘B’, tending to reduce the excitation of the latter even further. This process will stabilise, with 

EABA near to one, and EA and EB near to zero. In this integrated organization, the dominant 

chain ‘ABA’ predicts the input events by itself, and chains ‘A’ and ‘B’ are non-dominant. 



AERS AND CHAINS 25 

 

 

 

In the second scenario, the excitation of chains ‘A’ and ‘B’ (EA and EB, respectively) are 

initially high, and that of chain ‘ABA’ is low. Here, the contributions due to successful 

predictions are the same as those in the integrated scenario. However, the excitation of chain 

‘ABA’ is substantially reduced by its collisions with chains ‘A’ and ‘B’, whereas chains ‘A’ 

and ‘B’ are relatively uninhibited: their own predictions do not collide with each other at all, 

and EABA is low, so the impact of collisions with chain ‘ABA’ is small. This process will also 

stabilise, with EABA nearer zero, and EA and EB nearer one. In this segregated organization, 

the dominant chains, ‘A’ and ‘B’, alternately predict the stimulus events, and chain ‘ABA’ is 

non-dominant. 

 

The integrated and segregated organizations of chains are both stable with respect to the 

CHAINS dynamics. If it were not for the noise terms, Ui, the competition would settle into 

one of these two states and remain there. However, the addition of a moderate level of noise 

leads to transitions back and forth between one organization and the other. To adequately 

model perceptual multi-stability, one must choose the α and τ parameters to ensure an 

appropriate balance in the contribution of success, collisions and noise. There is a broad range 

of parameter sets that lead to multi-stability, and we can briefly summarise their respective 

influences as follows. In general increasing αS (the effect of successes) promotes integration, 

increasing αC (or αIE, the effect of collisions) promotes segregation, and increasing αU (the 

effect of noise) increases the rate of switching and promotes segregation to a small extent. 

Figure 2D presents example time courses of the excitations of the ‘ABA’, ‘A’, and ‘B’ chains, 

as they compete with each other over a 240 second period to explain an ‘ABA_’ input 

sequence. The ABA chain is discovered initially, and the ‘A’ and ‘B’ chains are discovered 

somewhat later (~25, 52 sec, respectively). The emergence of perceptual organizations is 

evident in these series: either the ‘ABA’ chain inhibits the ‘A’ and ‘B’ chains to produce an 
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integrated phase (e.g., 90–170 sec), or the ‘A’ and ‘B’ chains together inhibit the ‘ABA’ chain 

to produce a segregated phase (e.g., 60–90 sec). In this example, the noise contribution to 

each chain (U) suffices to produce phase durations on the order of tens of seconds. 

 

The basic chains dynamics set out above can be augmented in a straightforward manner by 

adding additional terms inside the sigmoid functions of the excitation and inhibition 

equations, φ(·). For example, a feedback term that causes a chain to excite itself promotes the 

stability of organizations. (Adding adaptation to this feedback term promotes the stability of 

organizations for only a limited period after they become dominant.) In addition, one can add 

a rediscovery term, which excites a chain every time another version of it is rebuilt from the 

input events. For example, if the parameters of an ‘ABA_’ sequence favor integration (i.e., 

smooth changes; see Figure 2A), then the ‘ABA’ chain will be rebuilt or rediscovered quite 

often. If the chains required to form the segregated organization have already been built (‘A’ 

and ‘B’), the frequent rediscovery of the ‘ABA’ chain will promote integration during the 

competition. The converse applies if the stimulus parameters promote segregation (Figure 

2B). Other terms are also conceivable, for instance, those which encode the effort made to 

attend to a particular sound event or organization. 

 

The most important feature of the CHAINS dynamics is that they arise naturally from the 

predictive successes of chains and the collisions between predictions—there is no special 

effort to predefine integrated or segregated percepts, as they exist with respect to an ‘ABA_’ 

sequence. Consequently, CHAINS is also bistable when presented with an alternating tone 

(‘ABAB…’), or a sequence containing three tones. Furthermore, CHAINS exhibits 

multistability when more than two possible stable states exist. For example, organizations can 

arise in which all three events in an ABA triplet break into three separate chains, or the first 

two tones in a triplet form one chain, and the third tone breaks off into its own chain. 
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Ultimately, which chains participate in the competition will depend on the parameters that 

govern the probability of their formation in the first place, and which groups of chains 

subsequently coalesce to form an organization will depend on their compatibility (collisions). 

Because CHAINS makes no assumptions concerning the form the perceptual organizations 

should ultimately take, it provides a flexible starting point from which to explore multistable 

perception driven by ambiguous sequences more complex than the classical alternating and 

galloping tones. As denoted above, the strength of this approach can be further increased by 

shaping the probability of chain formation in accordance with the vast body of AVD results 

based on the MMN, resulting in a fruitful integrated AERS-CHAINS framework. 

 

Summary 

 

We started from the Auditory Event Representation System (AERS), a conceptual framework 

linking auditory regularity violation detection and auditory scene analysis largely based on the 

MMN (Näätänen et al. 1978) research (Winkler and Schröger submitted). The notion of 

predictive processes underlying the elicitation of MMN (Winkler et al. 1996) has gained 

momentum in the last couple of years (e.g., Baldeweg 2007; Bendixen et al. 2012a; Garrido et 

al. 2009; Näätänen et al. 2011; Schröger 2007; Wacongne et al. 2011; Winkler 2007), partly 

because of its compatibility with predictive coding theories (e.g., Friston and Kiebel 2009a; 

Mumford 1992; Rao and Ballard 1999). AERS takes the next step by linking auditory 

regularity violation detection and auditory scene analysis through predictive representations 

of the regularities detected from the sound input, which then serve as proto-objects 

continuously vying for the possibility of appearing in conscious perception. From AERS, we 

extracted some theoretical requirements for computational models of auditory stream 

segregation, many of which have been implemented in the CHAINS model (Mill et al., 2013). 

CHAINS further specifies the formation, and competition between proto-objects. Applying 
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CHAINS to the auditory streaming paradigm (Van Noorden, 1975) the time-course of the 

excitation of the three typical proto-objects has been shown, demonstrating that CHAINS can 

model the dynamics of the competition and the emergence of perceptual organizations in 

multistable auditory stimulus configurations in a way that closely resembles perceptual 

reports of human listeners. Thus CHAINS demonstrates that the principles of AERS provide a 

viable basis for computational models of auditory stream segregation. 
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Figure 1. AERS model. The primary input to AERS are the incoming auditory stimulus 
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events with their basic features established by processes concerned with the initial analysis of 

the sound. Predictive regularity representations encode detected regularities and predict the 

upcoming sounds. The established auditory stimulus event representations (which, in turn, are 

biased by the predictions) are compared with the predictions. The outcome of this comparison 

is used for updating the predictive regularity representations and for the subsequent evaluation 

process. There, the auditory stimulus event representations are related to auditory context and 

to the current goals of the organism. The output of AERS is an auditory perceptual event 

representation (e.g. a particular tone of a flute). They can enter various mental operations and 

be consciously perceived. Please note, that this event representation is linked to the respective 

auditory object representation (e.g. the flute). In addition, the evaluation process can initiate 

the building of new or reactivate old but inactive regularity representations; for more details 

see text, for the definition of terms see Table 1.   
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Figure 2. CHAINS model. A) Schematic illustration of circumstances that favor integration. 

Events plotted in a time-feature space (solid black markers) vary gradually in feature distance 

and consequently form into a single chain (‘ABA’, yellow). Links from A to A are difficult to 

form, however, because it is difficult to skip over B when it forms a smooth continuation with 

the As, and the same is true for linking the Bs. B) Schematic illustration of circumstances that 

favor segregation. Events vary abruptly in feature distance. It is therefore easy to form a chain 

consisting solely of As (green), because it is probable that ‘B’ will be successfully skipped. 

For the same reason, a complementary chain consisting solely of Bs is probable (blue). 

However, the ‘ABA’ chain is difficult to form, owing to the improbability of building many 

abrupt links. C) Illustration showing how various aspects of a single ‘ABA_’ sequence are 

explained by three chains, with some overlap. (The example assumes that all links that can 

form, do so with certainty.) At the point where a chain contains a repeating subsequence, it 

closes to form a predictive loop (shown below). D) Time-varying excitations of the ‘ABA’, 

‘A’ and ‘B’ chains (EABA, EA and EB) in competition. Successes and collisions between the 

chains define a competition that gives rise to organizations that are stable for short periods. 
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Either ‘ABA’ dominates alone (integration), or ‘A’ and ‘B’ dominate together. 

 

 

 


