111 research outputs found
Two-photon resonant excitation of interatomic coulombic decay in neon dimers
The recent availability of intense and ultrashort extreme ultraviolet sources opens up the possibility of investigating ultrafast electronic relaxation processes in matter in an unprecedented regime. In this work we report on the observation of two-photon excitation of interatomic Coulombic decay (ICD) in neon dimers using the tunable intense pulses delivered by the free electron laser FERMI. The unique characteristics of FERMI (narrow bandwidth, spectral stability, and tunability) allow one to resonantly excite specific ionization pathways and to observe a clear signature of the ICD mechanism in the ratio of the ion yield created by Coulomb explosion. The present experimental results are explained by ab initio electronic structure and nuclear dynamics calculations
Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets
This document is the Technical Design Report covering the two large
spectrometer magnets of the PANDA detector set-up. It shows the conceptual
design of the magnets and their anticipated performance. It precedes the tender
and procurement of the magnets and, hence, is subject to possible modifications
arising during this process.Comment: 10 pages, 14MB, accepted by FAIR STI in May 2009, editors: Inti
Lehmann (chair), Andrea Bersani, Yuri Lobanov, Jost Luehning, Jerzy Smyrski,
Technical Coordiantor: Lars Schmitt, Bernd Lewandowski (deputy),
Spokespersons: Ulrich Wiedner, Paola Gianotti (deputy
Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR
Simulation results for future measurements of electromagnetic proton form
factors at \PANDA (FAIR) within the PandaRoot software framework are reported.
The statistical precision with which the proton form factors can be determined
is estimated. The signal channel is studied on the basis
of two different but consistent procedures. The suppression of the main
background channel, , is studied.
Furthermore, the background versus signal efficiency, statistical and
systematical uncertainties on the extracted proton form factors are evaluated
using two different procedures. The results are consistent with those of a
previous simulation study using an older, simplified framework. However, a
slightly better precision is achieved in the PandaRoot study in a large range
of momentum transfer, assuming the nominal beam conditions and detector
performance
Enantiosensitive Structure Determination by Photoelectron Scattering on Single Molecules
X-ray as well as electron diffraction are powerful tools for structure
determination of molecules. Electron diffraction methods yield
\r{A}ngstrom-resolution even when applied to large systems or systems involving
weak scatterers such as hydrogen atoms. For cases in which molecular crystals
cannot be obtained or the interaction-free molecular structure is to be
addressed, corresponding electron scattering approaches on gas-phase molecules
exist. Such studies on randomly oriented molecules, however, can only provide
information on interatomic distances, which is challenging to analyse in case
of overlapping distance parameters and they do not reveal the handedness of
chiral systems8. Here, we present a novel scheme to obtain information on the
structure, handedness and even detailed geometrical features of single
molecules in the gas phase. Using a loop-like analysis scheme employing input
from ab initio computations on the photoionization process, we are able to
deduce the three dimensional molecular structure with sensitivity to the
position individual atoms, as e.g. protons. To achieve this, we measure the
molecular frame diffraction pattern of core-shell photoelectrons in combination
with only two ionic fragments from a molecular Coulomb explosion. Our approach
is expected to be suitable for larger molecules, as well, since typical size
limitations regarding the structure determination by pure Coulomb explosion
imaging are overcome by measuring in addition the photoelectron in coincidence
with the ions. As the photoelectron interference pattern captures the molecular
structure at the instant of ionization, we anticipate our approach to allow for
tracking changes in the molecular structure on a femtosecond time scale by
applying a pump-probe scheme in the future
Investigating charge-up and fragmentation dynamics of oxygen molecules after interaction with strong X-ray free-electron laser pulses
During the last decade, X-ray free-electron lasers (XFELs) have enabled the study of light–matter interaction under extreme conditions. Atoms which are subject to XFEL radiation are charged by a complex interplay of (several subsequent) photoionization events and electronic decay processes within a few femtoseconds. The interaction with molecules is even more intriguing, since intricate nuclear dynamics occur as the molecules start to dissociate during the charge-up process. Here, we demonstrate that by analyzing photoelectron angular emission distributions and kinetic energy release of charge states of ionic molecular fragments, we can obtain a detailed understanding of the charge-up and fragmentation dynamics. Our novel approach allows for gathering such information without the need of complex ab initio modeling. As an example, we provide a detailed view on the processes happening on a femtosecond time scale in oxygen molecules exposed to intense XFEL pulses
Physics Performance Report for PANDA: Strong Interaction Studies with Antiprotons
To study fundamental questions of hadron and nuclear physics in interactions
of antiprotons with nucleons and nuclei, the universal PANDA detector will be
built. Gluonic excitations, the physics of strange and charm quarks and nucleon
structure studies will be performed with unprecedented accuracy thereby
allowing high-precision tests of the strong interaction. The proposed PANDA
detector is a state-of-the art internal target detector at the HESR at FAIR
allowing the detection and identification of neutral and charged particles
generated within the relevant angular and energy range. This report presents a
summary of the physics accessible at PANDA and what performance can be
expected.Comment: 216 page
Technical Design Report for the: PANDA Micro Vertex Detector
This document illustrates the technical layout and the expected performance
of the Micro Vertex Detector (MVD) of the PANDA experiment. The MVD will detect
charged particles as close as possible to the interaction zone. Design criteria
and the optimisation process as well as the technical solutions chosen are
discussed and the results of this process are subjected to extensive Monte
Carlo physics studies. The route towards realisation of the detector is
outlined.Comment: 189 pages, 225 figures, 41 table
- …