6 research outputs found
Masses, radii, and orbits of small Kepler planets : The transition from gaseous to rocky planets
We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities (FPPs) for all of the transiting planets (41 of 42 have an FPP under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than three times the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planet's mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify six planets with densities above 5 g cm-3, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than 2 R ⊕. Larger planets evidently contain a larger fraction of low-density material (H, He, and H2O).Peer reviewedFinal Accepted Versio
Artificial Solid Electrolyte Interphase Formation on Si Nanoparticles through Radiolysis: Importance of the Presence of an Additive
International audienceIn the context of energy transition, irradiation is a powerful tool to mimic quickly the modification of electrode materials upon charge/discharge cycles in lithium-ion batteries. In this study, the evolution of the surface of silicon nanoparticles upon irradiation in two electrolytes, containing or not fluoroethylene carbonate (FEC), was studied. In the presence of FEC, irradiation leads to the formation of a homogeneous layer of a few nanometers thick, covering the whole surface of the nanoparticles. The formation of an artificial solid electrolyte interphase (SEI) layer through radiolysis is thus achieved. Without FEC, only patches of degradation products are formed on the nanoparticle surfaces for the same irradiation dose. In the absence of FEC, LiPFO salts are formed. In the presence of FEC, LiPO, LiF, and Si–F bonds are generated. In both cases, the interphase contains LiCO and a polymer containing ethylene carbonate units. Slightly different polymers are formed at the surface of nanoparticles in the presence or absence of FEC, i.e., more cross-linked in the former case. The elastomeric properties of the polymer formed in the presence of FEC are thought to be responsible for the formation of the homogeneous layer on the Si surfaces, leading to the generation of an artificial solid SEI through the radiolysis process. This SEI, however, prevents the efficient transfer of Li ions, and more work is required to optimize its intrinsic (electro)chemical properties
Ex situ solid electrolyte interphase synthesis via radiolysis of Li-ion battery anode–electrolyte system for improved coulombic efficiency
International audienceThe radiolysis of a mixed solvent electrolyte–carbon anode material is investigated for the first time. The present work demonstrates the radiolytic growth of an SEI with a chemical composition similar to that formed during electrochemical cycling, as determined by XPS. The quantity of the SEI increases with increasing irradiation dose. Degradation products formed in the liquid and gas phase are also identified as matching those formed during electrochemical cycling. TEM results support the XPS results of increasing SEI content with increasing irradiation dose. Electrochemical characterization by galvanostatic cycling of test cells indicates that the radiolysis generated SEI greatly improves first cycle efficiency of the materials assembled in half cells, and impedance spectroscopy supports the result with an increase in resistivity observed for irradiated samples. This first study opens the door to the use of irradiation tools for the artificial generation of an SEI and for producing LIB anode materials with improved performance