232 research outputs found

    Anisotropic composite polymer for high magnetic force in microfluidic systems

    Get PDF
    International audienceAnisotropic carbonyl iron-PolyDiMethylSiloxane (PDMS) composites were developed and implemented in microfluidic devices to serve as magnetic flux concentrators. These original materials provide technological solutions for heterogeneous integration with PDMS. Besides microfabrication advantages, they offer interesting modular magnetic properties. Applying an external magnetic field during the PDMS reticulation leads to the formation of 1D-agglomerates of magnetic particles, organized in the non-magnetic polymer matrix. This induces an increase of susceptibility as compared to composites with randomly dispersed particles. In this report, we explored the gain in reachable magnetophoretic forces in operating microfluidic devices, from the study of magnetic micro-beads motion injected in the microchannel. We show that even at relatively large distances from the magnetically-functionalized channel wall, the anisotropic composite leads to a factor two increase in the magnetophoretic force. Finally, further investigations based on finite element description suggest that the measured benefit of anisotropic composite polymers does not only rely on the global susceptibility increase but also on the local magnetic field gradients originating from the microstructure

    Nitrate supply routes and impact of internal cycling in the North Atlantic Ocean inferred from nitrate isotopic composition

    Get PDF
    In this study we report full‐depth water column profiles for nitrogen and oxygen isotopic composition (δ15N and δ18O) of nitrate (NO3‐) during the GEOTRACES GA01 cruise (2014). This transect intersects the double gyre system of the subtropical and subpolar regions of the North Atlantic separated by a strong transition zone, the North Atlantic Current. The distribution of NO3‐ δ15N and δ18O shows that assimilation by phytoplankton is the main process controlling the NO3‐ isotopic composition in the upper 150 m, with values increasing in a NO3‐ δ18O versus δ15N space along a line with a slope of one towards the surface. In the subpolar gyre, a single relationship between the degree of NO3‐ consumption and residual NO3‐ δ15N supports the view that NO3‐ is supplied via Ekman upwelling and deep winter convection, and progressively consumed during the Ekman transport of surface water southward. The co‐occurrence of partial NO3‐ assimilation and nitrification in the deep mixed layer of the subpolar gyre elevates subsurface NO3‐ δ18O in comparison to deep oceanic values. This signal propagates through isopycnal exchanges to greater depths at lower latitudes. With recirculation in the subtropical gyre, cycles of quantitative consumption‐nitrification progressively decrease subsurface NO3‐ δ18O toward the δ18O of regenerated NO3‐. The low NO3‐ δ15N observed south of the Subarctic Front is mostly explained by N2 fixation, although a contribution from the Mediterranean outflow is required to explain the lower NO3‐ δ15N signal observed between 600 and 1500 m depth close to the Iberian margin

    Characterisation and expression analysis of the Atlantic halibut (Hippoglossus hippoglossus L.) cytokines: IL-1β, IL-6, IL-11, IL-12β and IFNγ

    Get PDF
    Genes encoding the five Atlantic halibut (Hippoglossus hippoglossus L.) cytokines; interleukin (IL)-1β, IL-6, IL-11b, IL-12βc, and interferon (IFN) γ, were cloned and characterised at a molecular level. The genomic organisation of the halibut cytokine genes was similar to that seen in mammals and/or other fish species. Several mRNA instability motifs were found within the 3′-untranslated region (UTR) of all cytokine cDNA sequences. The putative cytokine protein sequences showed a low sequence identity with the corresponding homologues in mammals, avian and other fish species. Nevertheless, important structural features were presumably conserved such as the presence, or absence in the case of IL-1β, of a signal peptide, secondary structure and family signature motifs. The relative expression pattern of the cytokine genes was analyzed in several halibut organs, revealing a constitutive expression in both lymphoid and non-lymphoid organs. Interestingly, the gills showed a relatively high expression of IL-1β, IL-12βc and IFNγ. The real time RT-PCR data also showed that the mRNA level of IL-1β, IL-6, IL-12βc and IFNγ was high in the thymus, while IL-11b was relatively highly expressed in the posterior kidney and posterior gut. Moreover, the halibut brain showed a relatively high level of IL-6 transcripts. Anterior kidney leucocytes in vitro stimulated with imiquimod showed a significant increase in mRNA level of the five halibut cytokine genes. The sequence and characterisation data presented here will be useful for further investigation of both innate and adaptive immune responses in halibut, and be helpful in the design of vaccines for the control of various infectious diseases

    Image-based multiplex immune profiling of cancer tissues: translational implications. A report of the International Immuno-oncology Biomarker Working Group on Breast Cancer

    Get PDF
    Recent advances in the field of immuno-oncology have brought transformative changes in the management of cancer patients. The immune profile of tumours has been found to have key value in predicting disease prognosis and treatment response in various cancers. Multiplex immunohistochemistry and immunofluorescence have emerged as potent tools for the simultaneous detection of multiple protein biomarkers in a single tissue section, thereby expanding opportunities for molecular and immune profiling while preserving tissue samples. By establishing the phenotype of individual tumour cells when distributed within a mixed cell population, the identification of clinically relevant biomarkers with high-throughput multiplex immunophenotyping of tumour samples has great potential to guide appropriate treatment choices. Moreover, the emergence of novel multi-marker imaging approaches can now provide unprecedented insights into the tumour microenvironment, including the potential interplay between various cell types. However, there are significant challenges to widespread integration of these technologies in daily research and clinical practice. This review addresses the challenges and potential solutions within a structured framework of action from a regulatory and clinical trial perspective. New developments within the field of immunophenotyping using multiplexed tissue imaging platforms and associated digital pathology are also described, with a specific focus on translational implications across different subtypes of cancer

    Pitfalls in machine learning-based assessment of tumor-infiltrating lymphocytes in breast cancer: a report of the international immuno-oncology biomarker working group

    Get PDF
    The clinical significance of the tumor-immune interaction in breast cancer is now established, and tumor-infiltrating lymphocytes (TILs) have emerged as predictive and prognostic biomarkers for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2-negative) breast cancer and HER2-positive breast cancer. How computational assessments of TILs might complement manual TIL assessment in trial and daily practices is currently debated. Recent efforts to use machine learning (ML) to automatically evaluate TILs have shown promising results. We review state-of-the-art approaches and identify pitfalls and challenges of automated TIL evaluation by studying the root cause of ML discordances in comparison to manual TIL quantification. We categorize our findings into four main topics: (1) technical slide issues, (2) ML and image analysis aspects, (3) data challenges, and (4) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns or design choices in the computational implementation. To aid the adoption of ML for TIL assessment, we provide an in-depth discussion of ML and image analysis, including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial and routine clinical management of patients with triple-negative breast cancer. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland

    Oxidative/Nitrative Stress and Inflammation Drive Progression of Doxorubicin-Induced Renal Fibrosis in Rats as Revealed by Comparing a Normal and a Fibrosis-Resistant Rat Strain

    Get PDF
    Chronic renal fibrosis is the final common pathway of end stage renal disease caused by glomerular or tubular pathologies. Genetic background has a strong influence on the progression of chronic renal fibrosis. We recently found that Rowett black hooded rats were resistant to renal fibrosis. We aimed to investigate the role of sustained inflammation and oxidative/nitrative stress in renal fibrosis progression using this new model. Our previous data suggested the involvement of podocytes, thus we investigated renal fibrosis initiated by doxorubicin-induced (5 mg/kg) podocyte damage. Doxorubicin induced progressive glomerular sclerosis followed by increasing proteinuria and reduced bodyweight gain in fibrosis-sensitive, Charles Dawley rats during an 8-week long observation period. In comparison, the fibrosis-resistant, Rowett black hooded rats had longer survival, milder proteinuria and reduced tubular damage as assessed by neutrophil gelatinase-associated lipocalin (NGAL) excretion, reduced loss of the slit diaphragm protein, nephrin, less glomerulosclerosis, tubulointerstitial fibrosis and matrix deposition assessed by periodic acid-Schiff, Picro-Sirius-red staining and fibronectin immunostaining. Less fibrosis was associated with reduced profibrotic transforming growth factor-beta, (TGF-beta1) connective tissue growth factor (CTGF), and collagen type I alpha 1 (COL-1a1) mRNA levels. Milder inflammation demonstrated by histology was confirmed by less monocyte chemotactic protein 1 (MCP-1) mRNA. As a consequence of less inflammation, less oxidative and nitrative stress was obvious by less neutrophil cytosolic factor 1 (p47phox) and NADPH oxidase-2 (p91phox) mRNA. Reduced oxidative enzyme expression was accompanied by less lipid peroxidation as demonstrated by 4-hydroxynonenal (HNE) and less protein nitrosylation demonstrated by nitrotyrosine (NT) immunohistochemistry and quantified by Western blot. Our results demonstrate that mediators of fibrosis, inflammation and oxidative/nitrative stress were suppressed in doxorubicin nephropathy in fibrosis-resistant Rowett black hooded rats underlying the importance of these pathomechanisms in the progression of renal fibrosis initiated by glomerular podocyte damage

    Broad and narrow personality traits as markers of one-time and repeated suicide attempts: A population-based study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studying personality traits with the potential to differentiate between individuals engaging in suicide attempts of different degrees of severity could help us to understand the processes underlying the link of personality and nonfatal suicidal behaviours and to identify at-risk groups. One approach may be to examine whether narrow, i.e., lower-order personality traits may be more useful than their underlying, broad personality trait dimensions.</p> <p>Methods</p> <p>We investigated qualitative and quantitative differences in broad and narrow personality traits between one-time and repeated suicide attempters in a longitudinal, population-based sample of young French Canadian adults using two multivariate regression models.</p> <p>Results</p> <p>One broad (Compulsivity: OR = 2.0; 95% CI 1.2–3.5) and one narrow personality trait (anxiousness: OR = 1.1; 95% CI 1.01–1.1) differentiated between individuals with histories of repeated and one-time suicide attempts. Affective instability [(OR = 1.1; 95% CI 1.04–1.1)] and anxiousness [(OR = .92; 95% CI .88–.95)], on the other hand, differentiated between nonattempters and one-time suicide attempters.</p> <p>Conclusion</p> <p>Emotional and cognitive dysregulation and associated behavioural manifestations may be associated with suicide attempts of different severity. While findings associated with narrow traits may be easier to interpret and link to existing sociobiological theories, larger effect sizes associated with broad traits such as Compulsivity may be better suited to objectives with a more clinical focus.</p

    Maturation-Dependent Licensing of Naive T Cells for Rapid TNF Production

    Get PDF
    The peripheral naïve T cell pool is comprised of a heterogeneous population of cells at various stages of development, which is a process that begins in the thymus and is completed after a post-thymic maturation phase in the periphery. One hallmark of naïve T cells in secondary lymphoid organs is their unique ability to produce TNF rapidly after activation and prior to acquiring other effector functions. To determine how maturation influences the licensing of naïve T cells to produce TNF, we compared cytokine profiles of CD4+ and CD8+ single positive (SP) thymocytes, recent thymic emigrants (RTEs) and mature-naïve (MN) T cells during TCR activation. SP thymocytes exhibited a poor ability to produce TNF when compared to splenic T cells despite expressing similar TCR levels and possessing comparable activation kinetics (upregulation of CD25 and CD69). Provision of optimal antigen presenting cells from the spleen did not fully enable SP thymocytes to produce TNF, suggesting an intrinsic defect in their ability to produce TNF efficiently. Using a thymocyte adoptive transfer model, we demonstrate that the ability of T cells to produce TNF increases progressively with time in the periphery as a function of their maturation state. RTEs that were identified in NG-BAC transgenic mice by the expression of GFP showed a significantly enhanced ability to express TNF relative to SP thymocytes but not to the extent of fully MN T cells. Together, these findings suggest that TNF expression by naïve T cells is regulated via a gradual licensing process that requires functional maturation in peripheral lymphoid organs
    corecore