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Abstract

In this study we report full-depth water column fdes for nitrogen and oxygen isotopic
composition §°N ands*®0) of nitrate (NQ@) during the GEOTRACES GAO01 cruise (2014).
This transect intersects the double gyre systetheoubtropical and subpolar regions of the
North Atlantic separated by a strong transition gothe North Atlantic Current. The
distribution of NQ §'°N and&*80 shows that assimilation by phytoplankton is tteémprocess
controlling the N@ isotopic composition in the upper 150 m, with eauncreasing in a NO
5180 versusd'®N space along a line with a slope of one towarésstirface. In the subpolar
gyre, a single relationship between the degree @f Monsumption and residual NG**N
supports the view that NQOis supplied via Ekman upwelling and deep wintanvaxtion, and
progressively consumed during the Ekman transpbdudace water southward. The co-
occurrence of partial Nassimilation and nitrification in the deep mixagtdr of the subpolar
gyre elevates subsurface BIG®0 in comparison to deep oceanic values. This signal
propagates through isopycnal exchanges to greaepehs at lower latitudes. With recirculation
in the subtropical gyre, cycles of quantitative siamption-nitrification progressively decrease
subsurface N® 50 toward theéd'®0 of regenerated N The low NQ §'°N observed south
of the Subarctic Front is mostly explained by fixation, although a contribution from the
Mediterranean outflow is required to explain thedo NOs 51°N signal observed between 600

and 1500 m depth close to the Iberian margin.

1. Introduction
The biological carbon pump plays a crucial rolgha regulation of Earth’s climate and the
distribution of biogeochemical properties in theaa, by exporting to the deep ocean@@t
is fixed into biomass during photosynthesis in $helit surface layer, through the sinking of
particles and their subsequent remineralizatiogtdpfiankton requires macro-nutrients for the
synthesis of organic matter. Nitrogen (N) is coastd as one of the most important nutrients
since it limits productivity in many oceanic reggo(Moore et al., 2013). The North Atlantic
Ocean, which hosts one of the most productive gppimytoplankton blooms of the world’s
ocean (Longhurst, 2007), is estimated to be afgegnit contributor to the global oceanic export
production (Falkowski et al., 1998; Sanders et24114).

The North Atlantic Ocean is characterized by tlassical double gyre system of the subtropical
and subpolar gyres (Figure 1). Both gyres harboumtrasting physical and biogeochemical
features (Sanders et al., 2014) and are separptedtoong transition area, the North Atlantic
Current (NAC). In addition, the Atlantic Meridion@verturning Circulation (AMOC) is a key
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component of the Earth’s climate system, with tiCN\carrying a northward flow of warm
and salty waters balanced by a southward flow ¢tdesodeep waters (North Atlantic Deep
Water) (Buckley & Marshall, 2016). The North Atlansubtropical gyre is considered to be a
year-round stratified oligotrophic N-limited ardddore et al., 2008, 2013), where fikation
performed by diazotrophs plays an important rolerioviding fixed N (or bioavailable N) to
the surface waters (Capone et al., 2005, 2008)omtrast, a strong seasonality is observed in
the North Atlantic subpolar gyre. The relief of wan light limitation induces the onset of a
spring phytoplankton bloom supported by nutrienfgpdied through deep winter convection
and leads to a strong pulse in export productiaiidivs & Dutkiewicz, 2002; Harrison et al.,
2013; Henson et al., 2009; Martin et al., 2011).

The oceanic inventory of fixed N is set by bothutgp(mostly N fixation) and outputs (mostly
sedimentary and water-column denitrification) (Bett et al., 2007; DeVries et al., 2013;
Gruber & Galloway, 2008). Within the ocean, thetritsition of N into the different pools is
controlled by oceanic circulation and internal eycprocesses such as assimilation,
remineralization (i.e., particulate N to ammoniwanyl nitrification (i.e., ammonium to nitrate).
The majority of fixed N exists in the form of nitea(NQy) and the coupled nitroge&'tN) and
oxygen §*80) isotopic composition is a powerful tool to stumhth the oceanic budget and the
internal cycling §*°N = ((*°*N/**N)sample/ (°N/**N)ret — 1), expressed in %o with atmospherigc N
as the referencé®0 = ((80/1%0)sample/ (*2EO/0)er— 1), expressed in %o with Vienna Standard
Mean Ocean Water (VSMOW) as the reference). Mehgichanges in NO&*N and NQ-
5180 are induced by N transformations that occur ditterent degrees of kinetic fractionation.
The latter are expressed as isotope effegtdefined by the ratio of reaction rates at whioh t
two isotopes are converted from reactant to proguet % (%o) = (1-¢°k/**k)) for N and'®
(%0) = (1-(8k/*%)) for O, wherek is the conversion rate coefficient for tior*O-containing

reactant).

NOs" isotopic measurements are still scarce and ofdyastudies have been performed in the
subpolar and inter-gyre regions of the North Alla@cean (Marconi et al., 2017, 2019; Peng
et al., 2018; Van Oostende et al., 2017). In tesent study we report full-depth water column
profiles for nitrogen and oxygen isotopic compasitof NG along the GEOTRACES GAO01
transect (hereafter referred to as GEOVIDE). Thénrohjectives are to understand (i) how
NOs is supplied into and exchanged between the subpalh subtropical gyres, and (ii) the
impacts of biological activity such as NCassimilation, N fixation and remineralization-

nitrification on the N@ pool.
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2. Material and methods
The GEOVIDE cruise took place from 15 May to 30€J@914 on board the R/APourquoi
pas?’ along the OVIDE transect in the North Atlantic Ogeedrom the Iberian margin to
Greenland) and across the Labrador Sea (from Greend Newfoundland) (Figure 1; see also
Sarthou et al., 2018). The complete water colums sanpled at 78 stations using a rosette
equipped with a SBE 911 CTD and 24 Niskin bottlesmperature, salinity and oxygen were
measured from surface to bottom while seawater Emipr biogeochemical measurements
were collected from bottom to surface during thstfileployment of the rosette (Lherminier &
Sarthou, 2017; Zunino et al., 2017). Additional pes were collected during a subsequent
rosette deployment to achieve a greater verticgblogion in the upper 200 m of the water

column (see Supporting Information Table S1).

At each station concentrations of nitrite ([NKP and nitrate ([IN@] being calculated from
(INO3]+[NO2]) - [NO2]) of the full-depth water column samples were gs@dl onboard using

a Seal Analytical AutoAnalyserlll and standard cwietric methods (Grasshoff et al., 1999;
Perez et al., 2018). Additional samples from tHesegquent rosette deployment (upper 200 m)
were filtered (Acrodiscs; 02m porosity) and stored at -20°C for nutrient analgs the home-
based laboratory (AMGC, VUB, Brussels, Belgium)ngsa Seal Analytical QuAAtro39 and
the same standard colorimetric methods. The stdraaration and detection limit for [NQ
were 100 nmol't and 90 nmolt, respectively (Fonseca-Batista et al., 2019; Gallzaiiez et
al., 2018).

Nitrate isotope samples were collected throughoeitiepth of the water column at 12 selected
stations (Figure 1). Seawater was filtered (Acrosli®.2um porosity), stored in HDPE bottles
pre-rinsed with sample water and kept frozen afG2Qntil analysis. At the home-based
laboratory, N@ §'°N ands!80 were determined for all samples with [N 2 umol I, using
the denitrifier method (Casciotti et al., 2002;18an et al., 2001). Briefly, denitrifying bacteria
(Pseudomonas chlororaphis ssp. aureofacieves)e used to quantitatively reduce 20 or 30 nmol
of NOs™ into N2O prior to measurement by gas chromatography/isotafo mass spectrometry
(GC/IRMS, Thermo DeltaV), using a custom-build ‘gerand cryo-trap’ system similar to the
one described by Casciotti et al. (2002). Measurgsngere referenced to atmospheric(fér
31°N) and VSMOW (for6*80) using international N®certified reference materials: IAEA-N3
(6M°N = +4.7 %0;3'80 = +25.6 %o) and USGS-34'PN = -1.8 %0;5'80 = -27.9 %.) (Bohlke et
al., 2003; Gonfiantini et al., 1995). Nitrite (NPwas removed from the samples by reaction

with sulfamic acid prior to the Nfisotope analyses to avoid any interference withe NO
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(Granger & Sigman, 2009). Sulfamic acid was algdiad to NG certified reference materials
to ensure that no contamination originated frons theatment. Since measurements ozsNO
5180 are sensitive to Nconcentration (Weigand et al., 2016), N@ference materials were
diluted using low-nutrient Sargasso Sea surfacenmtatgenerate standards with concentrations
that bracket the ones of the samples. Any trenddsst the measured NG®®0O of the two
certified reference materials bracketing the cotred¢ions of the samples were used to generate
a linear regression to correct for any concentmagibect (Marconi et al., 2015; Weigand et al.,
2016). Samples (n = 302) were analysed in dupligatling median standard deviation values
(1 SD) of 0.13 %0 and 0.25 %o for NG@'°N and5'20, respectively (see Supporting Information
Table S1). Previous studies in the subtropical §g@rected for the effect of salinity-driven
depth variation in th&*®0 of seawater on N30 (Knapp et al., 2008; Fawcett et al., 2015),
using a linear relationship between salinity &HD of ambient seawater (Bigg & Rohling,
2000) and assuming that most of theaNi® nitrified in situ (i.e., N@ 580 being set by O
5180 + 1.1 %o). Given the much smaller variations itindy in our study (i.e., 0.3), this
correction (i.e., 0.17%o) is below our precision s 580 and is, therefore, not considered

further.

3. Results
The Subarctic Front (SAF), roughly centered aro608N and associated with the central
branch of the NAC, separates colder and freshezraaif the subpolar gyre from warmer and
saltier waters of the subtropical gyre (Figure Racharacterized by a counter-clockwise and
clockwise circulation, respectively (Daniault et, &016; Rossby, 1996; Zunino et al., 2017).
These two gyres have contrasting biogeochemicalptuydical properties, with the subpolar
gyre being well ventilated with nutrient-rich deepean waters due to winter vertical mixing
and Ekman upwelling, and the subtropical gyre hgnw-nutrient surface waters which are
isolated from the deep ocean by a permanent thdéimeo(Figure 2c). The GEOVIDE
hydrographic transect intersects different regiohthe North Atlantic Ocean (Figure 1): the
subtropical gyre south of the SAF (stations 1,1IB3and 21; red) and the subpolar gyre north
of the SAF comprising the Iceland basin (statiofs 3 and 38; green), the Irminger basin
(stations 44 and 48; yellow) and the Labrador béstations 64, 69 and 77; blue). Despite the
limited number of stations, a transition from thégolar to subtropical gyre was clearly
observed for N@ concentrationy*®N, §'80 andA(15-18) (i.e., N@ §'°N - NOs 5180; Rafter
et al., 2013) (Figure 3).
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NOs 8N and§'®0 were relatively homogenous at depth$500 m (hereafter referred to as
“deep ocean”; Figure 3b,c), with average valuesA@&7 + 0.13 % and 1.98 + 0.28 %o
respectively, implying &(15-18) of 2.89 + 0.31 %0 (Figure 3d). These deegaocvalues are
in good agreement with values reported for othemtiNAtlantic sectors (Fawcett et al., 2015;
Knapp et al., 2008; Marconi et al., 2015, 2019;¢Petnal., 2018).

Stations located in the subpolar gyre (stationtoZ&r) presented relatively constant ;N&°N
values between 150 m depth and the seafloor, indigshable from the deep ocean signature
(4.87 £ 0.13 %0; p-value > 0.1), independent oftthein or depth range considered (Figure 3b;
Table 1). N@ §'°N at stations south of the SAF (stations 1 to 243 generally lower between
150 and 600 m depth (4.41 £ 0.14 %0) compared talésp ocean (p-value < 0.001; Tab)e
reaching a N®@ §°N minimum around 300 m (ranging from 4.13 to 4.32 %orelatively low
NOs 3N (4.65 + 0.17 %0) was also observed between 6001800 m south of the SAF (p-
value < 0.001; Tabl&). However, this feature was mostly observedatists 1 and 13 (4.54

+ 0.12 %0, p-value < 0.001), with stations 17 andoPdsenting values close to the deep ocean
signature (Table 1).

Despite a larger scatter apparent in the profil&s 5120 did exhibit a different trend from the
one of NQ &*N. NOs %0 increased from the deep ocean (1.98 + 0.28 %h5@m depth,
associated with decreasing B@oncentration (Figure 3a,c). This increase insN¢¥O was
largest for stations located south of the SAF, mewrup to 4.50 £ 0.28 %o at 150 m depth. The
Irminger and Labrador basins presented the smatiestase in N@ 50 toward the surface,
reaching only 2.55 + 0.17 %o at 150 m depth, whi@sN*80 increased to 3.27 + 0.27 %o in
the Iceland basin. This contrasting vertical eviolubf NO; §'°N and§*80 towards the surface
led to deviations ofA(15-18) relative to the deep ocean value (Figure Bdr the stations
located south of the SAF, the decreas#&(itb-18) was driven by the combined increase inNO
5180 and decrease in NG*N, while the decrease i(15-18) for the stations in the subpolar

gyre resulted from the increase in N&¥%0 only.

In the upper 150 m, both NG°N ands*®0 increased up to 12.4 %o and 14.0 %o respectively
(Figure 3b,c), while N® concentration decreased towards the surface @igay. Note that
NOs concentration was below the detection limit of tremitrifier method (< 2 pmotY) for
most of the surface samples south of the SAF (igper 40 m at stations 1 to 21) and in the
Labrador basin (i.e., upper 20 m at stations 697andFigure 1; Supporting Information Table
S1). Therefore, no surface nitrate isotope datgp@eented for these stations.
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4. Discussion
4.1. Upper ocean nutrient dynamics from the subpolar tdhe subtropical gyre

4.1.1. Nitrate assimilation and Ekman transport in the upper ocean layer

In the upper 150 m, the negative correlation bemwé€s; concentration and both NN
and 880 reflects the kinetic isotopic fractionation duyiblOs assimilation (Figure 3a,b,c).
NOs assimilation by phytoplankton preferentially inporates*“N into biomass, leaving the
residual N@ pool enriched if°N (Sigman et al., 1999; Wada & Hattori, 1978). Talso holds
for O isotopes, with the preferential conversion®® compared to'®0O, but with the
particularity that O atoms are not incorporated inibmass (i.e., N®being first converted to
ammonium and then to organic N) (Granger et aD42@010; Karsh et al., 2012, 2014).

NOs™ assimilation discriminates against the N and @ojses to the same extefte(~ %), as
observed in laboratory culture experiments (Graegeat., 2004, 2010; Karsh et al., 2012) and
field studies (DiFiore et al., 2009; Fawcett ef aD15). Accordingly, in a N© §*%0 versus
31N space, residual NOfalls along a line with a slope of 1, anchored tha isotopic
composition of the initial N@ pool (Sigman et al., 2005). Our observations tfearggest that
NOs™ assimilation is the predominant driver of the NiSotopic composition in the upper 150
m along the entire transect (Figure 4a). We reglogtes in the N© §'%0 versuss®N space
ranging between 0.99 and 1.18 for the upper 15Mhdistinguishable from a slope of 1. The
somewhat larger slope observed at station 69 inLéd@ador basin (= 1.53) should be
interpreted with care since this station has omlg surface sample with high NG'°N and

5180 values.

If NO3 assimilation proceeds with a constant isotopeceéfed if the reactant N pool (i.e., NO

) is neither replenished nor subject to loss othan consumption, the isotopic evolutions of
the residual N® pool are described by Rayleigh fractionation kogtimplying a linear
relationship in a N® 8N or NO; §'80 vs. In([NG]) space and with the slope reflecting the
negative isotope effect (Sigman et al., 1999). Negdinear correlations between NG*N
and In([NQ1), as well as between NG5O and In([NQ), further support assimilation of
NOs in the upper 150 m as the predominant process@igb,c). The isotope effects for
stations located south of the SAF (stations 11¥33nd 21) are 5.4 + 0.6 %0{R 0.82, p-value

< 0.001) and 6.1 + 0.8 %o ER= 0.72, p-value < 0.001) for NCGB*°N (= %) and NQ §*0 (=
18¢), respectively. Stations in the Iceland basinti@a 26, 32 and 38) and Irminger basin
(stations 44 and 48) present isotope effects o£® % %o (R = 0.89, p-value < 0.001) and 6.9
+ 0.4 %o (R = 0.92, p-value < 0.001) for NO5*°N and§'®0, respectively. These values fall
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within the range of isotope effects reported inlitezature for other oceanic regions (Fripiat et
al., 2019). In contrast, lower isotope effectsa@vserved in the Labrador basin (stations 64, 69
and 77), with'>s and*® being 3.3 + 0.3 %o (R= 0.90, p-value < 0.001) and 3.7 + 0.3 %5 (R
0.90, p-value < 0.001), respectively. These lowstmeates are likely due to artifacts from
mixing at these stations that are characterizetdily NQ -depleted surface water and large
vertical NG concentration gradients. Indeed, any resupply ot NiDa water parcel that has
experienced N@assimilation will deflect the isotopic signatufesach water parcel downward
from the Rayleigh fractionation line. The degreale¥iation from the Rayleigh fractionation

line increases with increasing degree ofsN€@nsumption (Sigman et al., 1999).

In the Irminger and Iceland basins (i.e., from salApgyre to SAF), a single relationship is
observed between the degree ofdNénsumption and residual NG*N ands®0 (Figure
4b,c). This suggests that NGs supplied from a single source and progressidefyleted by
NOs assimilation and export production. We suggedti@ is supplied by Ekman upwelling
and deep winter convection, with Labrador Sea W@iBkV) as the ultimate source. NG
then progressively consumed during the Ekman tahg surface water from the subpolar
gyre to the SAF. Just south of the SAF (stationarid 21), samples in the mixed layer fall on
or slightly below the relationship observed in thminger and Iceland basins, while subsurface
samples (i.e., below the mixed layer depth) cletallybelow it (Figure 4b,c). This suggests
that assimilation of nitrate in the mixed layer slo®t only draw on the local subsurface pool
but more likely on the nitrate pool advected frdma subpolar gyre. We thus argue that surface
water just south of the SAF is also partly suppierdummer by Ekman transport across the
inter-gyre boundary, in agreement with Oschlie®@@nd Williams and Follows (1998). Note
that the deviation of the subsurface samples obdesguth of the SAF will be discussed in the

following sections.

4.1.2. High latitude control on low-latitude permanent thermocline properties

While NGs™ assimilation controls the distribution of both fi@oncentration and its isotopic
composition in the upper 150 m along the GEOVIDansect, the characteristics of the
subsurface N®© pools (i.e.,~ 150 m depth) differ between basins. Indeed, themgssion
trends are parallel to each other in asN&®O versus$'®N space (Figure 4a), i.e., starting from
subsurface pools with different properties. Whitetihe Labrador and Irminger basins the
subsurface N® pool presents characteristics (i.e., ;NONOs &*°N ands!®0) close to the
deep oceanic values, subsurfacesNi2*O progressively increases in the Iceland basinimnd

the subtropical gyre, uncorrelated to an increadé@s 5*°N. In this section, we suggest that

This article is protected by copyright. All rights reserved.



this decoupling of N and O isotopes in subsurfa®g Kesults from a combination of physical
and biogeochemical processes that occur whersdpganals representative of the low-latitude
permanent thermocline (~ 27.4 — 27.5 k@ mutcrop in the subpolar gyre. This imprint isrthe
transmitted to the low-latitude permanent thermmlby isopycnal mixing (McCartney &
Talley, 1982) and becomes progressively erased dwy-ldtitude production and

remineralization-nitrification processes (Sigmamlet2009).

In the subpolar gyre, the occurrence of deep cdmoren winter (Clarke & Gascard, 1983;
Pickart et al., 2003; Vage et al., 2008; Yashaya60y) resets the upper 1500 m of the water
column to the initial conditions (Holte et al., 2ZQ1Yashayaev & Loder, 2016). This deep
vertical mixing in winter implies that Nassimilation and remineralization-nitrification of
sinking particles occur mostly within the same waparcel. The co-occurrence of MO
assimilation and nitrification in the same waterged has no effect on the NON-isotope
budget, as these processes are part of the inteyadlal for N atoms. Indeed, remineralization
of organic matter followed by nitrification produ®¢Os~ with the same N@© §'°N as the
assimilated N@ (Marconi et al., 2019; Rafter et al., 2013; Signearal., 2005). In contrast,
NOs assimilation and nitrification are respectivelgiak and a source for the O atoms. Their
co-occurrence affects the NUD-isotope budget (Fawcett et al., 2015; Sigmaal.e2009).
Partial NQ™ assimilation in the subpolar gyre causessN&O to increase since assimilated
NO;z 5180 is lower (down to -3 %o) than NOproduced by nitrification (i.e., # %0 + 1.1

%0; Supporting Information Figure S1) (Peng et d@D18; Marconi et al., 2019). The co-
occurrence of partial Nfassimilation and nitrification in the same watargel will, therefore,
raise NQ §'%0 while N& 8N remains constant, as observed (Figures 3c,d apdThis
mechanism is likely more strongly expressed initeéand basin because of an overall higher

export production (Falkowski et al., 1998) and loweevailing NQ™ concentration there.

South of the SAF, in the subtropical gyre, thiséase in N@ §'%0 is observed relatively deep

in the water column (down to 600 — 800 m; Figurg, oplying that this feature must be
generated remotely. Indeed, the low-latitude peenarthermocline imposes a relatively
shallow winter convection (< 250 m) with most oketNG;: assimilation and nitrification
occurring in the upper 250 m. This may partly eipthe increase in N©§®0 in the upper
250 m but not the increase deeper in the watenooldWe suggest that this deeper signal arises
in the surface waters of the subpolar gyre befenmegitransmitted to the low-latitude permanent
thermocline by isopycnal mixing (McCartney & Talleyp82). The comparison betwetfi5-
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18) and winter potential density anomaly contourthier supports this hypothesis (Figure 5b),

asA(15-18) values are similar along isopycnals.

In the subtropical gyre, the permanent thermocagers recirculate from the eastern to the
western North Atlantic (i.e. Sargasso Sea) follgnapredominant anticyclonic pattern. Nearly
complete N@ consumption in surface waters implies that asat@d NQ' is initially higher

in NOs™ 60 (2-4%) than the regenerated NGO (H.0 5%0 + 1.1 %o; Supporting
Information Figure S1; Marconi et al.,, 2019). A iser of quantitative consumption-
remineralization-nitrification cycles progressiveligcreases NO %0 toward regenerated
NOs 60 (Rafter et al., 2013; Sigman et al., 2009). Tixhanism is in agreement with lower
NOs §'80 values observed at equivalent isopycnals in tenpanent thermocline of the
Sargasso Sea (Fawcett et al., 2015).

4.2.N2 fixation and influence of the Mediterranean outflav

South of the SAF subsurface waters have lowes BION values than the deep ocean (Table 1;
Figure 3c and Figure 5a). Low N®™N values are commonly reported in the subtropigas g
of the North Atlantic Ocean, a features which hasrbmostly attributed to an incorporation of
new N in surface waters by biologicab fixation (Bourbonnais et al., 2009; Fawcett ef al.
2015; Knapp et al., 2008; Marconi et al., 2015, 202019; Riou et al., 2016). Tt&°N of
organic N produced byNixation is estimated to range from -2 to 0 %o (@=anter et al., 1997,
Montoya et al., 2002). Remineralization of this #6%N sinking particles, followed by
nitrification, transmit this Iow3*°N signal to the subsurface N®ool (Bourbonnais et al.,
2009; Knapp et al., 2008). Alternatively, the [0\@NS°N may also result from the deposition
of atmospheric N, harboring&@®N between -6 and -2 %o (Altieri et al., 2013; Hagstret al.,
2003; Knapp et al., 2010). However, based on thei wbAltieri et al. (2016) who show that
N deposition primarily originates from a marine dggmic source, Marconi et al. (2019)
estimated that atmospheric N deposition represaris10 % of the N fixation inputs to the

North Atlantic Ocean.

South of the SAF, Nfixation explains therefore both the low BIG*N values and a fraction
of the decoupling between NG°N and§'®0 (Figure 3). Here, lower subsurfac€l5-18)
values in comparison to the deep ocean are driyghéocombined increase in N®®0 and
a smaller decrease in NO™N (Figure 3). While the increase in N©'®0 likely results from
the co-occurrence of partial N@ssimilation and nitrification in the outcroppiregion of the
permanent pycnocline (see section 4.1.2), the dseren N@ 5N likely results from N

fixation in subtropical surface waters followed t®mineralization-nitrification in the upper
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water column. Newly fixed N can be generated |gcailremotely. Especially lowN NOs”

is observed in subsurface waters in the westerthMdfantic, as low as 2.5 %o (Fawcett et al.,
2015; Knapp et al., 2008; Marconi et al., 2015; \awstende et al., 2017). The predominant
anticyclonic circulation in the subtropical gyrdivaiarry this lows'°N signal from the western
North Atlantic to our studied area (Alvarez et aD02; Fernandez-Castro et al., 2019). While
an advection from the west is likely a significanntributor to the low subsurface NG™N,
significant N fixation rates (from 141 to 384.5 pmol N°d?) were observed south of the SAF
during GEOVIDE (stations 1 to 21) by Fonseca-Batital. (2019) using tHéN; dissolution
incubation method (GroRRkopf et al., 2012; Mohrlet2010). These observations imply that
the low NQ 8N is partly generated locally. However, our datandb allow to differentiate
the signal produced locally and the one advectedh fthe west. Further investigations are
needed to quantify their respective contributiotht® low NQ™ §'°N observed in our studied

area.

Close to the Iberian margin (stations 1 and 18waNOs §°N signal is observed deep in the
water column, i.e., between 600 and 1500 m depittceSmost of the remineralization-
nitrification of the sinking organic matter occaisove this depth, this signal must be generated
remotely. Mediterranean Water (MW, Figure 1) isteeed around 1000 m (i.e., salinity
maximum in Figure 2b) and originates from the mixiof Mediterranean Outflow Water
(MOW; + 34 %) with subsurface (Eastern North AtlanCentral Water, ; + 57 %) and
intermediate waters (Labrador Surface Water andedil Antarctic Intermediate Water; < 10
%) of the Northeast Atlantic basin (Carracedo gt2016). Low NQ &*°N is reported in the
Mediterranean Sea, i.e., 3.4 = 0.5 %o for the westéediterranean basin (Pantoja et al., 2002),
and results from Nfixation (Pantoja et al., 2002) and/or atmosph#rideposition (Emeis et
al., 2010; Mara et al., 2009). The co-occurrenckl®f and low NQ §'°N in our studied area

suggests that the Mediterranean Sea has an imp&d®95°N in the North Atlantic Ocean.

To assess the influence of MW on NG°N profiles along the transect, we used an isotopic
mixing model coupled with the results of an extehdgptimum Multi-Parameter (eOMP)
analysis performed for the GEOVIDE cruise, whictures the mixing proportions of different
source water types (Garcia-lbafiez et al., 20183t,Rive built a “flat” NQ™ §'°N profile by
setting the N@ &N of all the water masses to the average deep ocdaa (4.82 + 0.05 %o)
reported by Marconi et al. (2019). The latter @istinguishable from the values reported in the
present study (4.87 £ 0.13 %o). This approach idipeged on the idea that NGs supplied via

Ekman upwelling and deep winter convection ovethi@e subpolar gyre, yielding subsurface
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waters with N@ isotopic composition indistinguishable from deepean values, which is
subsequently transmitted south of the SAF by ispalyaixing (see discussions above). To
extract the contribution of MOW to the MW, we ugbkd results of a different eOMP performed
by Carracedo et al. (2016) who solved the mixingrr@ape St. Vincente (Portugal) between
the Mediterranean Outflow Water (MOW; with NG*N being set at 3.5 + 0.5%o, Pantoja et
al., 2002) and other sources waters since the pbiaverflow from the Mediterranean basin
(being set to the deep ocedAN value for this analysis). Our isotopic mixing nebtased on
the eOMP performed by Carracedo et al. (2016) stibatsthe signature of MW NOS™N is
4.42 + 0.13 %o. Using this MW signature and the eOp#formed by Garcia-Ibafez et al.
(2018), the resulting NN profiles returned by our isotopic mixing mode(j thick purple
lines in Figure 6) at the selected stations (basetheir proximity to the Iberian Peninsula)
reveal that an advection of the Mediterranean signadeed able to reproduce the low NO
515N values observed between 600 and 1500 m depth sduhe SAF (i.e., red profiles in
Figure 6). As the proportion of MW decreases wittréasing distance from the Iberian margin
(Garcia-lbafez et al., 2018; see also Figure 2b)nfluence on N@ isotopic composition
decreases, in agreement with our modelled valug®lbservations from station 1 to station 26.
Note that the influence of MW on NG5!°N could not be traced anymore north of the SAF
(i.e., station 26 in Figure 6).

However, the advection of the MW signal is unabléutly account for the N©§*°N minimum
observed between 150 and 600 m depth south ofARgSations 1 to 21), where the Eastern
North Atlantic Central Water (ENACW) is the domitavater mass (> 50%; 27.006< 27.3
Garcia-Ibafez et al., 2018). Therefore, the lowsNEPN observed in ENACW is likely the
result of both local K fixation and a signal advected from the westermtiNétlantic, as
discussed above. In the present study, the BIEN value of samples for which ENACW >
50% (n = 19) averaged 4.41 + 0.14 %o while \N@ncentration averaged 9.9 + 1.6 pmbl |
These values fall within the range reported by Maret al. (2019) for NACW (>20°N) (with
NOs 8'°N = 4.40 + 1.80 %o, ranging from 2.67 to 16.45 %l &0s concentration = 9.17 +
4.88 umol ). The wider range reported by Marconi et al. (Q0liely results from the
inclusion of surface samples impacted by nitragenaigation and from other types of NACW
encountered. Note that, while the proportion of ENK rapidly decreases (< 50%) north of

the SAF, no N@ §°N minimum is observed in subsurface waters (sé®sta6 in Figure 6).
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To conclude, our study shows that not only idikation important to generate the pool of low
NOsz 6N in the North Atlantic Ocean, but that an influeriiom the Mediterranean Sea needs
to be also considered to solve the NiGotopic budget in the eastern North Atlantic Gcea

4.3. Paleoceanographic implications
The North Atlantic Ocean is a key component of rtieridional overturning circulation and
climate in general (Broecker, 1998; Denton et210; Talley, 2013). The isotopic ratio of N
preserved in sedimentary records of the North AitaDcean is a promising tool to reconstruct
either surface nitrate concentration in the pasteby providing insights into past circulation
in the high-latitude Atlantic Ocean (Straub et 2D13a), or variations in the intensity o N
fixation (Straub et al., 2013b). The strong relasioip between the degree of NGnsumption
and residual N®@ §*°N from the subpolar gyre to the SAF (Figure 4b)murts the usefulness
of sedimentary Nv**N to reconstruct past degree of N@onsumption and thus surface NO
concentration. However, south of the SAF, compM@ consumption requires that sinking
organic N&™N is similar to the supplied NO&™N. Our study shows that the regional
subsurface N@3§'°N supplying surface waters is depleted®™ due to N fixation (Figure 5a).
Therefore, a shift in the location of the SAF neddsbe considered when interpreting
sedimentarnp®N records of the North Atlantic Ocean, as the drfee the sedimentar§y*>N

signal will not be the same north and south ofSA&.

5. Conclusion

The NG isotopic composition along the GEOTRACES GAOL $ext reveals the impact of
high-latitude processes on low-latitude areas efNorth Atlantic Ocean, with a southward
supply of NQ occurring both in the surface waters by wind-dnitkman transport and in the
permanent thermocline via isopycnal mixing. White to-occurrence of partial assimilation
and nitrification at high-latitudes leads to higfON §'%0 values, this elevated signal is
progressively erased during the recirculation ie subtropical gyre due to the increasing
influence of regenerated NG5O imprint. In addition, our study shows the impattN,
fixation on NQ isotopic composition in the temperate Northeatmtic Ocean as well as the
influence of the Mediterranean outflow deeper i@ water column, suggesting that the latter
needs to be taken into account to solve the Otopic budget in the eastern North Atlantic

Ocean.
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Tables

Table 1. Statistical significance of differences ilN 03'615N values. (a) Average values of N@ﬁlEN, sample size (n) and standard deviation (SD)
for different depth ranges in the four studied regbns as defined in Figure 1 and t-test results indating significance of the difference between the
means of two groups (p-values, P). Asterisk indicas P < 0.001. (b) Comparison of the 600-1500 m dapange between stations south of the SAF

with main basins north of the SAF and the deep ocea
a)
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Figure captions

Figure 1. Sampling locations (n = 78; dots) of BBOTRACES GAO01 (GEOVIDE) cruise along the OVIDEact in the North Atlantic (from
the Iberian margin to Greenland) and in the Lalr&sa (from Greenland to Newfoundland) with a sifigal schematic of the circulation (adapted
from Daniault et al., 2016). Selected stationgftmate isotopic composition are represented bgreal dots (n = 12; labelled with station number),
with colors referring to the studied regions: Saftsubarctic Front (SAF; red), Iceland basin (gle&minger basin (yellow) and Labrador basin
(blue). The approximate position of the SAF (50ZMnino et al., 2017) is represented by the blackwhile arrows represent the main surface
currents (North Atlantic Current (NAC), Greenlandr&nt (GC) and Labrador current (LC)). Intermegliatater masses discussed in this study
are also represented: Labrador Seawater (LSW) aaditétranean Water (MW).

Figure 2. Full depth water column profiles of olveer (a) potential temperature; °C), (b) salinity, and (c) nitrate concentratigrmol 1),
overlaid by black contours of potential density mady at 0 dbardp; kg ni°). Colored arrows above the panels indicate the $tudied regions
as in Figure 1: South of Subarctic Front (red)ldnd basin (green), Irminger basin (yellow) andraalor basin (blue).

Figure 3. Depth profiles of observed (a) nitrataaantration (N@; pumol 1), (b) NGOy §*°N (%0), (¢) NG 5180 (%0) and (dA(15-18) (%o). Colors
refer to the four studied regions as in Figuredut8 of Subarctic Front (red), Iceland basin (gyegminger basin (yellow) and Labrador basin
(blue).

Figure 4. Plots of (a) N©&80 (%0) versus N@ §'°N (%o), (b) NG 81°N (%o) versus In([NG]) (umol ) and (c) NQ 580 (%o) versus In([N@

D (umol 1Y) for all depth profiles (with colored data poirfivs the upper 150 m, except in the insert of pgagivhere all data points are colored).
Colors of GEOVIDE profiles refer to the four studieegions as in Figure 1: South of Subarctic F(oed), Iceland basin (green), Irminger basin
(yellow) and Labrador basin (blue). In panel (ag slope of the linear trendline for the upper %G reported in the legend, the filled black
square with error bars represents the average assgmic values (NOS°N = 4.87 + 0.13 %o and NOS¥0O =1.98 + 0.28 %o). Dotted black
diagonal lines represen{15-18) (%) contours. In panels (b) and (c), dotatk diagonal lines represent fractionation teemith an isotope
effect €) of 5 %eo.
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Figure 5. Vertical distribution of observed (a) N&°N (%o) and (b)A(15-18) (%o) in the upper 2000 m. Colored arrowsvabthie panels indicate
the four studied regions as in Figure 1: SouthuddeBctic Front (red), Iceland basin (green), Irneingasin (yellow) and Labrador basin (blue).
Overlaying white contours drawn in panel (b) represvinter potential density anomatyat 0 dbar (kg ni) based on the World Ocean Database
(WOA13; 1.00 deg.; 1955-2012 Jan-Mar).

Figure 6. Observed NO5N (%o) profiles (symbols and colors as in FigureB)l modeled N© N (%o) profiles (thick purple lines) generated
using an isotopic mixing model coupled with theutessof an extended Optimum Multi-Parameters (eOBiRjlysis to study the influence of the
Mediterranean Water (see text for details) alomgdhstern part of the GEOTRACES GAO1 (GEOVIDE)<eat with increasing distance from
the Iberian margin (from station 1 to station Z&)yor bars for measured profiles correspond to {=5M.13 %o), while error for the model outputs
is shown by the grey shaded envelop (see textdtaild).
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