82 research outputs found

    Not All Children with Under-Control Asthma are Controlled

    Get PDF
    Subclinical lung function alterations can sometimes be discovered in asthmatic patients under clinical control. This study aimed to identify the burden of asthmatic children with subclinical airways abnormalities who may benefit from an adjustment in asthma therapy. 134 6-to-17-year-old asthmatic children were enrolled. Of them, 98 presented apparently under clinical control disease and all performed spirometry before and after bronchodilation: 17 (17.3%) had a positive bronchodilation test, in addition to significantly lower lung function indexes as compared to those with under-control asthma who had a negative bronchodilation test. These patients were randomized and re-evaluated: patients (n=8) receiving an adjustment in their therapy showed an improvement in lung function tests and quality of life indexes as compared to 7 without therapy adjustment. In conclusion, a substantial number of apparently-under-control asthmatic children show airways alterations that can be improved by adjusting their therapy, which also seems to enhance their quality of life

    Right Ventricular Adaptation Is Associated with the Glu298Asp Variant of the NOS3 Gene in Elite Athletes

    Get PDF
    Nitric oxide (NO), an important endogenous pulmonary vasodilator is synthetized by the endothelial NO synthase (NOS3). Reduced NO bioavailability and thus the Glu298Asp polymorphism of NOS3 may enhance right ventricular (RV) afterload and hypertrophic remodeling and influence athletic performance. To test this hypothesis world class level athletes (water polo players, kayakers, canoeists, rowers, swimmers, n = 126) with a VO2 maximum greater than 50ml/kg/min were compared with non-athletic volunteers (n = 155). Cardiopulmonary exercise tests and cardiac magnetic resonance imaging (cMRI) were performed to determine structural or functional changes. Genotype distribution of the NOS3 Glu298Asp polymorphism was not affected by gender or physical performance. Cardiac MRI showed increased stroke volume with eccentric hypertrophy in all athletes regardless of their genotype. However, the Asp allelic variant carriers had increased RV mass index (32+/-6g versus 27+/-6g, p<0.01) and larger RV stroke volume index (71+/-10ml versus 64+/-10ml, p<0.01) than athletes with a Glu/Glu genotype. Genotype was not significantly associated with athletic performance. In the non-athletic group no genotype related differences were detected. The association between the NOS3 Glu298Asp polymorphism and RV structure and dimension in elite athletes emphasizes the importance of NOS3 gene function and NO bioavailability in sport related cardiac adaptation

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species

    Interactions between commercial fishing vessels and a pelagic seabird in the southern Mediterranean Sea

    No full text
    Abstract Background Fishing activities can influence foraging behaviour of many seabird species worldwide. Seabirds are attracted by fishing vessels which can facilitate access to demersal fish as a novel food resource that otherwise would be unavailable. On the other hand, intense fishing activities cause depletion of fish stocks with a reduction of natural prey available for seabirds. Moreover, fisheries discards can have lower nutritional value than natural prey. However, the importance of fisheries discard for seabirds and the possible implications on their foraging ecology is still poorly understood. In this study, we analysed the interactions of Scopoli’s shearwaters (Calonectris diomedea) during their foraging trips with fishing vessels. We combined the GPS and accelerometer data of shearwaters with the GPS data gathered during the same period from fishing vessels. Accelerometers allowed us to identify the main behaviours of birds. Results The presence of fishing vessels significantly affected the individual behaviour of Scopoli’s shearwaters. Birds increased the time spent sitting on the water within 1.28 ± 0.13 km of fishing vessels likely feeding or waiting for discards. Approaches towards vessels within the interaction distance were therefore classified as an interaction and were recorded in about 40% of individuals. Birds interacting with fisheries had longer flight time during their foraging trips and covered longer distances to reach more distant foraging areas compared with individuals not approaching vessels. Conclusions Our results suggested that fisheries discard consumption might not be a profitable source of food for Scopoli’s shearwaters. Despite the high density of fishing vessels in the home range of Scopoli’s shearwater, most individuals did not interact with them. Accordingly, scavenging individuals showed a lower foraging efficiency than their conspecifics. Intraspecific competition for foraging areas might play an important role for the foraging decision of birds to consume fisheries discards
    • 

    corecore