51 research outputs found

    The first metazoa living in permanently anoxic conditions

    Get PDF
    Background: Several unicellular organisms (prokaryotes and protozoa) can live under permanently anoxic conditions. Although a few metazoans can survive temporarily in the absence of oxygen, it is believed that multi-cellular organisms cannot spend their entire life cycle without free oxygen. Deep seas include some of the most extreme ecosystems on Earth, such as the deep hypersaline anoxic basins of the Mediterranean Sea. These are permanently anoxic systems inhabited by a huge and partly unexplored microbial biodiversity.Results: During the last ten years three oceanographic expeditions were conducted to search for the presence of living fauna in the sediments of the deep anoxic hypersaline L'Atalante basin (Mediterranean Sea). We report here that the sediments of the L'Atalante basin are inhabited by three species of the animal phylum Loricifera (Spinoloricus nov. sp., Rugiloricus nov. sp. and Pliciloricus nov. sp.) new to science. Using radioactive tracers, biochemical analyses, quantitative X-ray microanalysis and infrared spectroscopy, scanning and transmission electron microscopy observations on ultra-sections, we provide evidence that these organisms are metabolically active and show specific adaptations to the extreme conditions of the deep basin, such as the lack of mitochondria, and a large number of hydrogenosome-like organelles, associated with endosymbiotic prokaryotes.Conclusions: This is the first evidence of a metazoan life cycle that is spent entirely in permanently anoxic sediments. Our findings allow us also to conclude that these metazoans live under anoxic conditions through an obligate anaerobic metabolism that is similar to that demonstrated so far only for unicellular eukaryotes. The discovery of these life forms opens new perspectives for the study of metazoan life in habitats lacking molecular oxygen

    Tissue expression of lactate transporters (MCT1 and MCT4) and prognosis of malignant pleural mesothelioma (brief report)

    Get PDF
    Background: Malignant pleural mesothelioma (MPM) is an aggressive neoplasm of the pleura, mainly related to asbestos exposure. As in other solid tumors, malignant cells exhibit high glucose uptake and glycolytic rates with increased lactic acid efflux into the interstitial space. Lactate transport into and out of cells, crucial to maintaining intracellular pH homeostasis and glycolysis, is carried out by monocarboxylate transporters (MCTs) and the chaperone basigin (CD147). We set out to examine the clinical significance of basigin, MCT1 and MCT4 in the context of MPM and to evaluate their expression in relation to the evolution of the disease. Methods: We used immunohistochemistry to measure the expression of basigin, MCT1 and MCT4 in a cohort of 135 individuals with MPM compared to a series of 15 non-MPM pleura specimens. Moreover, by Kaplan-Meier and Cox analyses we evaluated whether an expression over the average of these markers could be associated with the patients' overall survival (OS). Results: We detected positive staining of basigin, MCT1, and MCT4 in most MPM specimens. In particular, MCT4 was always positive in malignant tissues but undetectable in the 4 normal pleural specimens incorporated within the tissue microarray. This was confirmed in the additional series of 15 normal pleural samples. Moreover, MCT4 expression was significantly associated with reduced OS. Conclusion: In this study, the tissue expression of basigin did not prove to be exploitable as a diagnostic or prognostic marker for MPM patients. The expression of MCT1 was not informative either, being tightly correlated with that of basigin. However, the expression of MCT4 showed promise as a diagnostic/therapeutic and prognostic biomarker

    A Drug Screening Revealed Novel Potential Agents against Malignant Pleural Mesothelioma

    Get PDF
    SIMPLE SUMMARY: Malignant pleural mesothelioma (MPM) is a disease of the pleura related to asbestos exposure. Despite the advancements in new therapeutic frontiers, it has a dismal prognosis and very limited treatment options. To find novel weapons in the care of MPM, we undertook a drug-repurposing approach that consists of evaluating existing drugs already approved for other human diseases. We screened 1170 drugs, and we observed that cephalomannine, a taxane; ouabain, a cardiac glycoside; thonzonium bromide, an antifungal surfactant; and emetine, an emetic alkaloid, had marked activity against immortalized and patient-derived primary MPM cell lines. These compounds were shown to be promising, and they will be evaluated in further studies, both in vitro and in vivo. We believe that drug repurposing is a valuable strategy to facilitate and accelerate the definition of novel treatment options for the management of MPM. ABSTRACT: The lack of effective therapies remains one of the main challenges for malignant pleural mesothelioma (MPM). In this perspective, drug repositioning could accelerate the identification of novel treatments. We screened 1170 FDA-approved drugs on a SV40-immortalized mesothelial (MeT-5A) and five MPM (Mero-14, Mero-25, IST-Mes2, NCI-H28 and MSTO-211H) cell lines. Biological assays were carried out for 41 drugs, showing the highest cytotoxicity and for whom there were a complete lack of published literature in MPM. Cytotoxicity and caspase activation were evaluated with commercially available kits and cell proliferation was assayed using MTT assay and by clonogenic activity with standard protocols. Moreover, the five most effective drugs were further evaluated on patient-derived primary MPM cell lines. The most active molecules were cephalomannine, ouabain, alexidine, thonzonium bromide, and emetine. Except for alexidine, these drugs inhibited the clonogenic ability and caspase activation in all cancer lines tested. The proliferation was inhibited also on an extended panel of cell lines, including primary MPM cells. Thus, we suggest that cephalomannine, ouabain, thonzonium bromide, and emetine could represent novel candidates to be repurposed for improving the arsenal of therapeutic weapons in the fight against MPM

    The Paradox of an Unpolluted Coastal Site Facing a Chronically Contaminated Industrial Area

    Get PDF
    none13noPresent and past industrial activities in coastal areas have left us a legacy of contamination and habitat degradation with potential implications for human health. Here, we investigated a coastal marine area enclosed in a Site of National Interest (SNI) of the central-western Adriatic (Mediterranean Sea), where priority actions of environmental remediation are required by governmental laws due the high environmental and human risk, and that is off-limits to any human activity since 2002. In particular, our investigation was focused on an area located in front of a chemical industry dismissed more than 3 decades ago. We report that the concentrations of heavy-metal and organic contaminants in the investigated sediments were generally lower than those expected to induce detrimental biological effects. Meiofaunal abundance, biomass and community structure changed among stations, but regardless of the distance from the abandoned industrial plant. Taxa richness within the SNI did not change significantly compared to the controls and the lack of some taxa in the SNI transects was not due to the contamination of the SNI area. The results of this study suggest a natural recovery of the marine area over 2 decades of restrictions on human activities, including fishing and shipping bans. If the hypothesis of the natural recovery of this SNI will be further confirmed by other studies, the plans for the identification and monitoring of the most polluted areas in Italy should necessarily be redefined also in the light of the Water Framework, the Marine Strategy Framework and the Environmental Quality Standard Directives.openCorinaldesi C.; Bianchelli S.; Rastelli E.; Varrella S.; Canensi S.; Gambi C.; Lo Martire M.; Musco L.; Bertocci I.; Fanelli E.; Lucia G.; Simoncini N.; Dell'Anno A.Corinaldesi, C.; Bianchelli, S.; Rastelli, E.; Varrella, S.; Canensi, S.; Gambi, C.; Lo Martire, M.; Musco, L.; Bertocci, I.; Fanelli, E.; Lucia, G.; Simoncini, N.; Dell'Anno, A

    po 220 ran a novel and promising gene for malignant pleural mesothelioma

    Get PDF
    Introduction RAN is a member of RAS superfamily of GTPases involved in a varied range of cellular processes. Although it is widely demonstrated RAN is overexpressed in many human tumours having an essential role in malignant cell survival and cancer progression, little is known about its role in Malignant Pleural Mesothelioma (MPM). Previous studies showed the RAN gene is upregulated in mesothelioma tissues and cell lines, so it might be involved in carcinogenesis of MPM. We aimed to explore the functional role of RAN in MPM cell lines and its likely use as co-target in mesothelioma treatment. Material and methods The role of RAN in MPM tumorigenesis was investigated through RNA interference, on a panel of one mesothelial cell line (Met-5A) and four MPM cell lines (Mero-14, Mero-25, Istmes-2 and NCI-H28). After monitoring gene knockdown, at both the mRNA and protein levels, a phenotypic study was performed through Caspase-3/7, Sulforhodamine B, Wound-Healing and Colony Formation assays. Flow cytometry was employed to monitor cell cycle. To validate data from siRNA experiments, two different siRNA were independently used to target RAN. The gene was also knocked-out using a lentiviral CRISPR/Cas9 system in Mero-14. Cas9 endonuclease and gRNA were transduced by two different lentiviral transfer vectors.The doxycycline-regulated Cas9 induction was followed by DNA, RNA and proteins extraction to confirm the occurrence of gene disruption. TIDE analysis was carried out to monitor targeted mutations triggered by the genome editing. Results and discussions The siRNA-mediated knockdown was confirmed at both the mRNA and protein level in all cell lines. The silencing caused a statistically significant decrease of proliferation rate and clonogenicity in Mero-14, Mero-25 and Istmes-2.The migration ability was affected in Met-5A and Istmes-2. An increase in apoptosis was observed in all cell lines, being statistically significant only in the malignant ones. Flow cytometry analysis showed an increase of cells in G0/G1 phase and a decrease of cells in S phase, being significant in Mero-14 cell line only. RAN knock-out has been confirmed at both the mRNA and protein level, whereas the TIDE analysis is still ongoing. Conclusion This study showed that MFAP5 is a novel myoepithelial cell marker that appears to be up-regulated in duct epithelium in DCIS and IC-NST during tumourogenesis and that its cytoplasmic expression in invasive tumours seems to have apoor prognostic role manifested by its association with poor prognostic parameters such as high grade, late stage,lymph node invasion and increased MVD

    A Drug Screening Revealed Novel Potential Agents against Malignant Pleural Mesothelioma

    Get PDF
    Simple Summary Malignant pleural mesothelioma (MPM) is a disease of the pleura related to asbestos exposure. Despite the advancements in new therapeutic frontiers, it has a dismal prognosis and very limited treatment options. To find novel weapons in the care of MPM, we undertook a drug-repurposing approach that consists of evaluating existing drugs already approved for other human diseases. We screened 1170 drugs, and we observed that cephalomannine, a taxane; ouabain, a cardiac glycoside; thonzonium bromide, an antifungal surfactant; and emetine, an emetic alkaloid, had marked activity against immortalized and patient-derived primary MPM cell lines. These compounds were shown to be promising, and they will be evaluated in further studies, both in vitro and in vivo. We believe that drug repurposing is a valuable strategy to facilitate and accelerate the definition of novel treatment options for the management of MPM. The lack of effective therapies remains one of the main challenges for malignant pleural mesothelioma (MPM). In this perspective, drug repositioning could accelerate the identification of novel treatments. We screened 1170 FDA-approved drugs on a SV40-immortalized mesothelial (MeT-5A) and five MPM (Mero-14, Mero-25, IST-Mes2, NCI-H28 and MSTO-211H) cell lines. Biological assays were carried out for 41 drugs, showing the highest cytotoxicity and for whom there were a complete lack of published literature in MPM. Cytotoxicity and caspase activation were evaluated with commercially available kits and cell proliferation was assayed using MTT assay and by clonogenic activity with standard protocols. Moreover, the five most effective drugs were further evaluated on patient-derived primary MPM cell lines. The most active molecules were cephalomannine, ouabain, alexidine, thonzonium bromide, and emetine. Except for alexidine, these drugs inhibited the clonogenic ability and caspase activation in all cancer lines tested. The proliferation was inhibited also on an extended panel of cell lines, including primary MPM cells. Thus, we suggest that cephalomannine, ouabain, thonzonium bromide, and emetine could represent novel candidates to be repurposed for improving the arsenal of therapeutic weapons in the fight against MPM

    Variation rs2235503 C > A Within the Promoter of MSLN Affects Transcriptional Rate of Mesothelin and Plasmatic Levels of the Soluble Mesothelin-Related Peptide

    Get PDF
    Soluble mesothelin-related peptide (SMRP) is a promising biomarker for malignant pleural mesothelioma (MPM), but several confounding factors can reduce SMRP-based test’s accuracy. The identification of these confounders could improve the diagnostic performance of SMRP. In this study, we evaluated the sequence of 1,000 base pairs encompassing the minimal promoter region of the MSLN gene to identify expression quantitative trait loci (eQTL) that can affect SMRP. We assessed the association between four MSLN promoter variants and SMRP levels in a cohort of 72 MPM and 677 non-MPM subjects, and we carried out in vitro assays to investigate their functional role. Our results show that rs2235503 is an eQTL for MSLN associated with increased levels of SMRP in non-MPM subjects. Furthermore, we show that this polymorphic site affects the accuracy of SMRP, highlighting the importance of evaluating the individual’s genetic background and giving novel insights to refine SMRP specificity as a diagnostic biomarker

    Instant single-photon Fock state tomography

    Get PDF
    Heralded single photons are prepared at a rate of ~100 kHz via conditional measurements on polarization-nondegenerate biphotons produced in a periodically poled KTP crystal. The single-photon Fock state is characterized using high frequency pulsed optical homodyne tomography with a fidelity of (57.6 +- 0.1)%. The state preparation and detection rates allowed us to perform on-the-fly alignment of the apparatus based on real-time analysis of the quadrature measurement statistics

    Where less may be more: how the rare biosphere pulls ecosystems strings

    Get PDF
    Rare species are increasingly recognized as crucial, yet vulnerable components of Earth’s ecosystems. This is also true for microbial communities, which are typically composed of a high number of relatively rare species. Recent studies have demonstrated that rare species can have an over-proportional role in biogeochemical cycles and may be a hidden driver of microbiome function. In this review, we provide an ecological overview of the rare microbial biosphere, including causes of rarity and the impacts of rare species on ecosystem functioning. We discuss how rare species can have a preponderant role for local biodiversity and species turnover with rarity potentially bound to phylogenetically conserved features. Rare microbes may therefore be overlooked keystone species regulating the functioning of host-associated, terrestrial and aquatic environments. We conclude this review with recommendations to guide scientists interested in investigating this rapidly emerging research area

    Malignant Pleural Mesothelioma: an investigation on relevant cancer genes and potentially repositionable drugs

    No full text
    Malignant pleural mesothelioma (MPM) is a very aggressive cancer originating from the pleural membrane and mainly due to inhalation of asbestos. As a consequence of the past exposure to asbestos in industrialized countries and the present use in developing ones, as Canada, China, India, Kazakhstan, Russia and Thailand, the current incidence of MPM, is still high (1-6/100.000) and it is expected to further increase. The prognosis of MPM is poor with a median overall survival of less than one year from the time of diagnosis. The non-specific symptoms and the lack of accurate biomarkers do not allow a sufficiently early diagnosis for a radical treatment of the disease. To date, few pharmacological treatment options are available and effective cures are missing. Thus, the identification of novel diagnostic and prognostic biomarkers, as well as therapeutic targets is urgently needed. In the current project, we moved onto two different paths. On one side, we focused on a group of deregulated genes in MPM, as ASS1, EIF4G1, GALNT7, GLUT1, IGF2BP3, ITGA4, RAN, SLC16A1, SLC16A3, SOD1 and THBS2. In order to investigate their role in tumorigenesis of MPM we performed an RNA interference-based screen on four MPM cell lines (Mero-14, Mero-25, IST-Mes2 and NCI-H28,) and one non-malignant mesothelial cell line (MeT-5A). The screening was followed by a phenotypic study in vitro. We analysed changes in proliferation rates, caspases 3/7 activity, migration abilities and clonogenicity. In particular, for SLC16A1 and SLC16A3, we further evaluated their expression in vivo on a series of 135 MPM samples, through tissue microarray immunohistochemistry (IHC). On the other side, in the light of the lack of an efficient therapeutical treatment, we aimed to identify novel active compounds to be repositioned in the MPM therapeutic management. Thus, we screened an FDA-approved drug library on the panel of MPM and non-MPM cells above mentioned. We identified two putative drugs, as the antimetabolite Fludarabine and the bisphosphonate Risedronic Acid. Although these results are preliminary and require deepen evaluations, overall, they suggest that repurposing of these two compounds could represent a promising approach for MPM treatment
    • …
    corecore