26 research outputs found

    Linear enamel hypoplasia in Homo naledi re-appraised in light of new Retzius periodicities

    Get PDF
    Objectives: Among low latitude apes, developmental defects of enamel often recur twice yearly, linkable to environmental cycles. Surprisingly, teeth of Homo naledi from Rising Star in South Africa (241-335 kya), a higher latitude site with today a single rainy season, also exhibit bimodally distributed hypoplastic enamel defects, but with uncertain timing and etiology. Newly-determined Retzius periodicities for enamel formation in this taxon enable a reconstruction of the temporal patterning of childhood stress. Methods: Using high resolution casts of 31 isolated anterior teeth from Homo naledi, 82 enamel defects (linear enamel hypoplasia-LEH) were identified. 17 teeth are assigned to three individuals. Perikymata in the occlusal wall of enamel furrows and between the onsets of successive LEH were visualized with scanning electron microscopy, and counted. Defects were measured with an optical scanner. Conversion of perikymata counts to estimates of LEH duration and inter-LEH interval draws upon Retzius periodicities of 9 and 11 days. Results: Anterior teeth record more than a year of developmental distress, expressed as two asymmetric intervals centered on 4.5 and 7.5-months bounded by 3 LEH. Durations, also, show bimodal distributions, lasting three or 12 weeks. Short duration LEH are more severe than long duration. Relative incisor/canine rates of formation are indistinguishable from modern humans. Discussion: We invoke a disease and dearth model, with short episodes of distress reflecting onset of disease in young infants, lasting about three weeks, followed by a season of undernutrition, possibly intensified by secondary plant compounds, spanning about 12 weeks, inferably coincident with austral winter

    Endostructural Morphology in Hominoid Mandibular Third Premolars: Geometric Morphometric Analysis of Dentine Crown Shape

    Get PDF
    In apes, the mandibular third premolar (P3) is adapted for a role in honing the large upper canine. The role of honing was lost early in hominin evolution, releasing the tooth from this functional constraint and allowing it to respond to subsequent changes in masticatory demands. This led to substantial morphological changes, and as such the P3 has featured prominently in systematic analyses of the hominin clade. The application of microtomography has also demonstrated that examination of the enamel-dentine junction (EDJ) increases the taxonomic value of variations in crown morphology. Here we use geometric morphometric techniques to analyze the shape of the P3 EDJ in a broad sample of fossil hominins, modern humans, and extant apes (n = 111). We test the utility of P3 EDJ shape for distinguishing among hominoids, address the affinities of a number of hominin specimens of uncertain taxonomic attribution, and characterize the changes in P3 EDJ morphology across our sample, with particular reference to features relating to canine honing and premolar ‘molarization’. We find that the morphology of the P3 EDJ is useful in taxonomic identification of individual specimens, with a classification accuracy of up to 88%. The P3 EDJ of canine-honing apes displays a tall protoconid, little metaconid development, and an asymmetrical crown shape. Plio-Pleistocene hominin taxa display derived masticatory adaptations at the EDJ, such as the molarized premolars of Australopithecus africanus and Paranthropus, which have well-developed marginal ridges, an enlarged talonid, and a large metaconid. Modern humans and Neanderthals display a tall dentine body and reduced metaconid development, a morphology shared with premolars from Mauer and the Cave of Hearths. Homo naledi displays a P3 EDJ morphology that is unique among our sample; it is quite unlike Middle Pleistocene and recent Homo samples and most closely resembles Australopithecus, Paranthropus and early Homo specimens

    Homo naledi, a new species of the genus Homo from the Dinaledi Chamber, South Africa

    Full text link
    Homo naledi is a previously-unknown species of extinct hominin discovered within the Dinaledi Chamber of the Rising Star cave system, Cradle of Humankind, South Africa. This species is characterized by body mass and stature similar to small-bodied human populations but a small endocranial volume similar to australopiths. Cranial morphology of H. naledi is unique, but most similar to early Homo species including Homo erectus, Homo habilis or Homo rudolfensis. While primitive, the dentition is generally small and simple in occlusal morphology. H. naledi has humanlike manipulatory adaptations of the hand and wrist. It also exhibits a humanlike foot and lower limb. These humanlike aspects are contrasted in the postcrania with a more primitive or australopith-like trunk, shoulder, pelvis and proximal femur. Representing at least 15 individuals with most skeletal elements repeated multiple times, this is the largest assemblage of a single species of hominins yet discovered in Africa

    Endostructural morphology in hominoid mandibular third premolars: discrete traits at the enamel-dentine junction

    Get PDF
    For access to specimens, we would like to thank Bernhard Zipfel, Lee Berger, Sifelani Jira (Evolutionary Studies Intitute, University of the Witwatersrand), Miriam Tawane (Ditsong Museum), Job Kibii (National Museums of Kenya), Metasebia Endalemaw, Yared Assefa (Ethiopian Authority for Research and Conservation of Cultural heritage), Yoel Rak, Alon Barash, Israel Hershkovitz (Sackler School of Medicine), Michel Toussaint (ASBL ArchĂ©ologie Andennaise, Jean-Jacques Cleyet-Merle (MusĂ©e National de PrĂ©histoire des Eyzies-de-Tayac), Ullrich Glasmacher (Institut fĂŒr Geowissenschaften, UniversitĂ€t Heidelberg), Robert Asher, Hendrik Turni, Irene Mann (Museum fĂŒr Naturkunde, Berlin), Jakov Radovčić (Croatian Natural History Museum), Christophe Boesch and Uta Schwarz (Max Planck Institute for Evolutionary Anthropology) and the Leipzig University Anatomical Collection (ULAC). For project support we thank Zeresenay Alemseged and Bill Kimbel. We would also like to thank the reviewers, the associate editor and the editor for their helpful comments and guidance, as well as Ottmar Kullmer for comments on an earlier version of this manuscript. This work was funded by the Max Planck Society, and financial support for L.K.D. was provided by a Connor Family Faculty Fellowship and the Office of Research and Development at the University of Arkansa

    New fossil remains of Homo naledi from the Lesedi Chamber, South Africa

    Get PDF
    The Rising Star cave system has produced abundant fossil hominin remains within the Dinaledi Chamber, representing a minimum of 15 individuals attributed to Homo naledi. Further exploration led to the discovery of hominin material, now comprising 131 hominin specimens, within a second chamber, the Lesedi Chamber. The Lesedi Chamber is far separated from the Dinaledi Chamber within the Rising Star cave system, and represents a second depositional context for hominin remains. In each of three collection areas within the Lesedi Chamber, diagnostic skeletal material allows a clear attribution to H. naledi. Both adult and immature material is present. The hominin remains represent at least three individuals based upon duplication of elements, but more individuals are likely present based upon the spatial context. The most significant specimen is the near-complete cranium of a large individual, designated LES1, with an endocranial volume of approximately 610 ml and associated postcranial remains. The Lesedi Chamber skeletal sample extends our knowledge of the morphology and variation of H. naledi, and evidence of H. naledi from both recovery localities shows a consistent pattern of differentiation from other hominin species

    Mandibular molar root and pulp cavity morphology in Homo naledi and other Plio-Pleistocene hominins

    Get PDF
    The craniomandibular morphology of Homo naledi shows variable resemblances with species across Homo, which confounds an easy assessment of its phylogenetic position. In terms of skull shape, H. naledi has its closest affinities with Homo erectus, while mandibular shape places it closer to early Homo. From a tooth crown perspective, the smaller molars of H. naledi make it distinct from early Homo and H. erectus. Here, we compare the mandibular molar root morphology of six H. naledi individuals from the Dinaledi Chamber to those of African and Eurasian Plio-Pleistocene fossil hominins (totalling 183 mandibular first, second and third molars). The analysis of five root metric variables (cervical plane area, root length, root cervix volume, root branch volume, and root surface area) derived from microCT reconstructions reveals that the molar roots of H. naledi are smaller than those of Homo habilis, Homo rudolfensis, and H. erectus, but that they resemble those of three Homo sp. specimens from Swartkrans and Koobi Fora in size and overall appearance. Moreover, though H. naledi molar roots are similar in absolute size to Pleistocene Homo sapiens, they differ from H. sapiens in having a larger root volume for a given cervical plane area and less taurodont roots; the root cervix-to-branch proportions of H. naledi are comparable to those of Australopithecus africanus and species of Paranthropus. Homo naledi also shares a metameric root volume pattern (M2 > M3 > M1) with Australopithecus and Paranthropus but not with any of the other Homo species (M2 > M1 > M3). Our findings therefore concur with previous studies that found that H. naledi shares plesiomorphic features with early Homo, Australopithecus, and Paranthropus. While absolute molar root size aligns H. naledi with Homo from North and South Africa, it is distinguishable from these in terms of root volumetric proportions

    Dental topography and the diet of Homo naledi

    Get PDF
    Though late Middle Pleistocene in age, Homo naledi is characterized by a mosaic of Australopithecus-like (e.g., curved fingers, small brains) and Homo-like (e.g., elongated lower limbs) traits, which may suggest it occupied a unique ecological niche. Ecological reconstructions inform on niche occupation, and are particularly successful when using dental material. Tooth shape (via dental topography) and size were quantified for four groups of South African Plio-Pleistocene hominins (specimens of Australopithecus africanus, Paranthropus robustus, H. naledi, and Homo sp.) on relatively unworn M2s to investigate possible ecological differentiation in H. naledi relative to taxa with similar known geographical ranges. H. naledi has smaller, but higher-crowned and more wear resistant teeth than Australopithecus and Paranthropus. These results are found in both lightly and moderately worn teeth. There are no differences in tooth sharpness or complexity. Combined with the high level of dental chipping in H. naledi, this suggests that, relative to Australopithecus and Paranthropus, H. naledi consumed foods with similar fracture mechanics properties but more abrasive particles (e.g., dust, grit), which could be due to a dietary and/or environmental shift(s). The same factors that differentiate H. naledi from Australopithecus and Paranthropus may also differentiate it from Homo sp., which geologically predates it, in the same way. Compared to the great apes, all hominins have sharper teeth, indicating they consumed foods requiring higher shear forces during mastication. Despite some anatomical similarities, H. naledi likely occupied a distinct ecological niche from the South African hominins that predate it
    corecore