498 research outputs found

    The Hrs/Stam Complex Acts as a Positive and Negative Regulator of RTK Signaling during Drosophila Development

    Get PDF
    BACKGROUND: Endocytosis is a key regulatory step of diverse signalling pathways, including receptor tyrosine kinase (RTK) signalling. Hrs and Stam constitute the ESCRT-0 complex that controls the initial selection of ubiquitinated proteins, which will subsequently be degraded in lysosomes. It has been well established ex vivo and during Drosophila embryogenesis that Hrs promotes EGFR down regulation. We have recently isolated the first mutations of stam in flies and shown that Stam is required for air sac morphogenesis, a larval respiratory structure whose formation critically depends on finely tuned levels of FGFR activity. This suggest that Stam, putatively within the ESCRT-0 complex, modulates FGF signalling, a possibility that has not been examined in Drosophila yet. PRINCIPAL FINDINGS: Here, we assessed the role of the Hrs/Stam complex in the regulation of signalling activity during Drosophila development. We show that stam and hrs are required for efficient FGFR signalling in the tracheal system, both during cell migration in the air sac primordium and during the formation of fine cytoplasmic extensions in terminal cells. We find that stam and hrs mutant cells display altered FGFR/Btl localisation, likely contributing to impaired signalling levels. Electron microscopy analyses indicate that endosome maturation is impaired at distinct steps by hrs and stam mutations. These somewhat unexpected results prompted us to further explore the function of stam and hrs in EGFR signalling. We show that while stam and hrs together downregulate EGFR signalling in the embryo, they are required for full activation of EGFR signalling during wing development. CONCLUSIONS/SIGNIFICANCE: Our study shows that the ESCRT-0 complex differentially regulates RTK signalling, either positively or negatively depending on tissues and developmental stages, further highlighting the importance of endocytosis in modulating signalling pathways during development

    Vascularisation is not necessary for gut colonisation by enteric neural crest cells

    Get PDF
    The vasculature and nervous system share striking similarities in their networked, tree-like architecture and in the way they are super-imposed in mature organs. It has previously been suggested that the intestinal microvasculature network directs the migration of enteric neural crest cells (ENCC) along the gut to promote the formation of the enteric nervous system (ENS). To investigate the inter-relationship of migrating ENCC, ENS formation and gut vascular development we combined fate-mapping of ENCC with immunolabelling and intravascular dye injection to visualise nascent blood vessel networks. We found that the enteric and vascular networks initially had very distinct patterns of development. In the foregut, ENCC migrated through areas devoid of established vascular networks. In vessel-rich areas, such as the midgut and hindgut, the distribution of migrating ENCC did not support the idea that these cells followed a pre-established vascular network. Moreover, when gut vascular development was impaired, either genetically in Vegfa120/120 or Tie2-Cre;Nrp1fl/- mice or using an in vitro Wnt1-Cre;Rosa26Yfp/+ mouse model of ENS development, ENCC still colonised the entire length of the gut, including the terminal hindgut. These results demonstrate that blood vessel networks are not necessary to guide migrating ENCC during ENS development. Conversely, in miRet51 mice, which lack ENS in the hindgut, the vascular network in this region appeared to be normal suggesting that in early development both networks form independently of each other

    Reversible Cortical Blindness Following Successful Surgical Repair Of Two Stab Wounds In The Heart

    Get PDF
    This report describes a case of cortical blindness that followed successful surgical repair of two stab wounds in the heart in a 29-year old Libyan man. The patient presented in a state of pre cardiac arrest (shock and low cardiac output status), following multiple chest stab wounds. Chest tube was immediately inserted. Surgery was urgently performed suturing the two wounds; in the root of the aorta and in the left ventricle, and haemostasis was secured. Cardiac arrest was successfully prevented. The patient recovered smoothly, but 24 hours later he declared total blindness. Ophtalmic and neurological examinations and investigations that included fundoscopy, Electroencephalograms (EEGs) and Computed Tomography Scans revealed no abnormalities, apart from absence of alpha waves in the EEGs. We diagnosed the case as cortical blindness and continued caring for the patient conservatively. Three days later, the patient regained his vision gradually and was discharged on the 7th postoperative day without any remarks

    Western European Populations of the Ichneumonid Wasp Hyposoter didymator Belong to a Single Taxon

    Get PDF
    Hyposoter didymator (Hymenoptera, Ichneumonidae) is a generalist solitary endoparasitoid of noctuid larvae. In the present work, we tested whether populations of H. didymator were divided in several genetically distinct taxa as described for many other generalist parasitoid species, and whether differences in H. didymator parasitism rates were explained by the insect host species and/or by the plant on which these hosts were feeding on. The genetic analysis of natural populations collected in different regions in France and Spain on seven different insect hosts and seven different host plants (775 individuals) showed that H. didymator populations belong to a unique single taxon. However, H. didymator seems to be somewhat specialized. Indeed, in the fields it more often parasitized Helicoverpa armigera compared to the other host species collected in the present work. Also, H. didymator parasitism rates in field conditions and semi-field experimental studies were dependent on the host plants on which H. armigera larvae are feeding. Still, H. didymator can occur occasionally on non-preferred noctuid species. One hypothesis explaining the ability of H. didymator to switch hosts in natura could be related to fluctuating densities of the preferred host over the year; this strategy would allow the parasitoid to avoid seasonal population collapses

    Photoluminescence measurements in Be-delta-doped back-gate induced quantum well

    Full text link
    The photoluminescence (PL) spectra of a two-dimensional electron system induced in a Be-delta-doped GaAs/AlGaAs quantum well (QW) with a back gate are measured. The electron density is controlled from 1 X 10^{9} cm^{-2} to 2.5 X 10^{11} cm^{-2} by changing the back gate voltage. There is a linear increase in the acceptor PL spectrum around 1.49 eV with an increase in the back gate voltage and the PL disappears from the exciton bound to neutral donors (D^{0}X) around 1.51 eV at 1.2 X 10^{10} cm^{-2}.Comment: 3 page

    Hygroregulation, a key ability for eusocial insects: Native Western European honeybees as a case study

    Get PDF
    Sociality has brought many advantages to various hymenoptera species, including their ability of regulating physical factors in their nest (e.g., temperature). Although less studied, humidity is known to be important for egg, larval and pupal development, and also for nectar concentration. Two subspecies of Apis mellifera of the M evolutionary lineage were used as models to test the ability of a superorganism (i.e. honeybee colony) to regulate the humidity in its nest (i.e. “hygroregulation hypothesis”) in four conservation centers: two in France (A. m. mellifera) and two in Portugal (A. m. iberiensis). We investigated the ability of both subspecies to regulate the humidity in hives daily, but also during the seasons for one complete year. Our data and statistical analysis demonstrated the capacity of the bees to regulate humidity in their hive, regardless of the day, season or subspecies. Furthermore, the study showed that humidity in beehives is stable even during winter, when brood is absent, and when temperature is known to be less stable in the beehives. These results suggest that humidity is important for honeybees at every life stage, maybe because of the ‘imprint’ of the evolutionary history of this hymenopteran lineage.This work was supported in part by the research project BEEHOPE funded by the European call for projects 2013-2014 BiodivERsA / FACCEJPI from research agencies of France (ANR-14- EBID-0001), Spain (PCIN-2014-090) and Portugal (BiodivERsA /0002/2014). I. Eouzan is financed by a doctoral grant from the Ministry of National Education, Higher Education and Research (France).info:eu-repo/semantics/publishedVersio

    Additive manufacturing of 3D nano-architected metals

    Get PDF
    Most existing methods for additive manufacturing (AM) of metals are inherently limited to ~20–50 Όm resolution, which makes them untenable for generating complex 3D-printed metallic structures with smaller features. We developed a lithography-based process to create complex 3D nano-architected metals with ~100 nm resolution. We first synthesize hybrid organic–inorganic materials that contain Ni clusters to produce a metal-rich photoresist, then use two-photon lithography to sculpt 3D polymer scaffolds, and pyrolyze them to volatilize the organics, which produces a >90 wt% Ni-containing architecture. We demonstrate nanolattices with octet geometries, 2 Όm unit cells and 300–400-nm diameter beams made of 20-nm grained nanocrystalline, nanoporous Ni. Nanomechanical experiments reveal their specific strength to be 2.1–7.2 MPa g^(−1) cm^3, which is comparable to lattice architectures fabricated using existing metal AM processes. This work demonstrates an efficient pathway to 3D-print micro-architected and nano-architected metals with sub-micron resolution

    Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot

    Get PDF
    Motional narrowing refers to the striking phenomenon where the resonance line of a system coupled to a reservoir becomes narrower when increasing the reservoir fluctuation. A textbook example is found in nuclear magnetic resonance, where the fluctuating local magnetic fields created by randomly oriented nuclear spins are averaged when the motion of the nuclei is thermally activated. The existence of a motional narrowing effect in the optical response of semiconductor quantum dots remains so far unexplored. This effect may be important in this instance since the decoherence dynamics is a central issue for the implementation of quantum information processing based on quantum dots. Here we report on the experimental evidence of motional narrowing in the optical spectrum of a semiconductor quantum dot broadened by the spectral diffusion phenomenon. Surprisingly, motional narrowing is achieved when decreasing incident power or temperature, in contrast with the standard phenomenology observed for nuclear magnetic resonance

    Additive manufacturing of 3D nano-architected metals

    Get PDF
    Most existing methods for additive manufacturing (AM) of metals are inherently limited to ~20–50 Όm resolution, which makes them untenable for generating complex 3D-printed metallic structures with smaller features. We developed a lithography-based process to create complex 3D nano-architected metals with ~100 nm resolution. We first synthesize hybrid organic–inorganic materials that contain Ni clusters to produce a metal-rich photoresist, then use two-photon lithography to sculpt 3D polymer scaffolds, and pyrolyze them to volatilize the organics, which produces a >90 wt% Ni-containing architecture. We demonstrate nanolattices with octet geometries, 2 Όm unit cells and 300–400-nm diameter beams made of 20-nm grained nanocrystalline, nanoporous Ni. Nanomechanical experiments reveal their specific strength to be 2.1–7.2 MPa g^(−1) cm^3, which is comparable to lattice architectures fabricated using existing metal AM processes. This work demonstrates an efficient pathway to 3D-print micro-architected and nano-architected metals with sub-micron resolution
    • 

    corecore