249 research outputs found

    Tex19 and Sectm1 concordant molecular phylogenies support co-evolution of both eutherian-specific genes

    Get PDF
    International audienceBackground: Transposable elements (TE) have attracted much attention since they shape the genome and contribute to species evolution. Organisms have evolved mechanisms to control TE activity. Testis expressed 19 (Tex19) represses TE expression in mouse testis and placenta. In the human and mouse genomes, Tex19 and Secreted and transmembrane 1 (Sectm1) are neighbors but are not homologs. Sectm1 is involved in immunity and its molecular phylogeny is unknown. Methods: Using multiple alignments of complete protein sequences (MACS), we inferred Tex19 and Sectm1 molecular phylogenies. Protein conserved regions were identified and folds were predicted. Finally, expression patterns were studied across tissues and species using RNA-seq public data and RT-PCR. Results: We present 2 high quality alignments of 58 Tex19 and 58 Sectm1 protein sequences from 48 organisms. First, both genes are eutherian-specific, i.e., exclusively present in mammals except monotremes (platypus) and marsupials. Second, Tex19 and Sectm1 have both duplicated in Sciurognathi and Bovidae while they have remained as single copy genes in all further placental mammals. Phylogenetic concordance between both genes was significant (p-value < 0.05) and supported co-evolution and functional relationship. At the protein level, Tex19 exhibits 3 conserved regions and 4 invariant cysteines. In particular, a CXXC motif is present in the N-terminal conserved region. Sectm1 exhibits 2 invariant cysteines and an Ig-like domain. Strikingly, Tex19 C-terminal conserved region was lost in Haplorrhini primates while a Sectm1 C-terminal extra domain was acquired. Finally, we have determined that Tex19 and Sectm1 expression levels anti-correlate across the testis of several primates (ρ = −0.72) which supports anti-regulation. Conclusions: Tex19 and Sectm1 co-evolution and anti-regulated expressions support a strong functional relationship between both genes. Since Tex19 operates a control on TE and Sectm1 plays a role in immunity, Tex19 might suppress an immune response directed against cells that show TE activity in eutherian reproductive tissues

    1-Hydroxy-2(1H)-pyridinone-Based Chelators with Potential Catechol O-Methyl Transferase Inhibition and Neurorescue Dual Action against Parkinson’s Disease

    Get PDF
    Two analogues of tolcapone where the nitrocatechol group has been replaced by a 1-hydroxy-2(1H)-pyridinone have been designed and synthesised. These compounds are expected to have a dual mode of action both beneficial against Parkinson’s disease: they are designed to be inhibitors of catechol O-methyl transferase, which contribute to the reduction of dopamine in the brain, and to protect neurons against oxidative damage. To assess whether these compounds are worthy of biological assessment to demonstrate these effects, measurement of their pKa and stability constants for Fe(III), in silico modelling of their potential to inhibit COMT and blood–brain barrier scoring were performed. These results demonstrate that the compounds may indeed have the desired properties, indicating they are indeed promising candidates for further evaluation

    Allostery in Its Many Disguises: From Theory to Applications.

    Get PDF
    Allosteric regulation plays an important role in many biological processes, such as signal transduction, transcriptional regulation, and metabolism. Allostery is rooted in the fundamental physical properties of macromolecular systems, but its underlying mechanisms are still poorly understood. A collection of contributions to a recent interdisciplinary CECAM (Center Européen de Calcul Atomique et Moléculaire) workshop is used here to provide an overview of the progress and remaining limitations in the understanding of the mechanistic foundations of allostery gained from computational and experimental analyses of real protein systems and model systems. The main conceptual frameworks instrumental in driving the field are discussed. We illustrate the role of these frameworks in illuminating molecular mechanisms and explaining cellular processes, and describe some of their promising practical applications in engineering molecular sensors and informing drug design efforts

    NMR and MD studies of the temperature-dependent dynamics of RNA YNMG-tetraloops

    Get PDF
    In a combined NMR/MD study, the temperature-dependent changes in the conformation of two members of the RNA YNMG-tetraloop motif (cUUCGg and uCACGg) have been investigated at temperatures of 298, 317 and 325 K. The two members have considerable different thermal stability and biological functions. In order to address these differences, the combined NMR/MD study was performed. The large temperature range represents a challenge for both, NMR relaxation analysis (consistent choice of effective bond length and CSA parameter) and all-atom MD simulation with explicit solvent (necessity to rescale the temperature). A convincing agreement of experiment and theory is found. Employing a principle component analysis of the MD trajectories, the conformational distribution of both hairpins at various temperatures is investigated. The ground state conformation and dynamics of the two tetraloops are indeed found to be very similar. Furthermore, both systems are initially destabilized by a loss of the stacking interactions between the first and the third nucleobase in the loop region. While the global fold is still preserved, this initiation of unfolding is already observed at 317 K for the uCACGg hairpin but at a significantly higher temperature for the cUUCGg hairpin

    Differential Neuregulin 1 Cleavage in the Prefrontal Cortex and Hippocampus in Schizophrenia and Bipolar Disorder: Preliminary Findings

    Get PDF
    Neuregulin 1 (NRG1) is a key candidate susceptibility gene for both schizophrenia (SCZ) and bipolar disorder (BPD). The function of the NRG1 transmembrane proteins is regulated by cleavage. Alteration of membrane bound-NRG1 cleavage has been previously shown to be associated with behavioral impairments in mouse models lacking expression of NRG1-cleavage enzymes such as BACE1 and gamma secretase. We sought to determine whether alterations in NRG1 cleavage and associated enzymes occur in patients with SCZ and BPD.Using human postmortem brain, we evaluated protein expression of NRG1 cleavage products and enzymes that cleave at the external (BACE1, ADAM17, ADAM19) and internal (PS1-gamma secretase) sides of the cell membrane. We used three different cohorts (Controls, SCZ and BPD) and two distinct brain regions: BA9-prefrontal cortex (Controls (n = 6), SCZ (n = 6) and BPD (n = 6)) and hippocampus (Controls (n = 5), SCZ (n = 6) and BPD (n = 6)). In BA9, the ratio of the NRG1 N-terminal fragment relative to full length was significantly upregulated in the SCZ cohort (Bonferroni test, p = 0.011). ADAM17 was negatively correlated with full length NRG1 levels in the SCZ cohort (r = -0.926, p = 0.008). In the hippocampus we found significantly lower levels of a soluble 50 kDa NRG1 fragment in the two affected groups compared the control cohort (Bonferroni test, p = 0.0018). We also examined the relationship of specific symptomatology criteria with measures of NRG1 cleavage using the Bipolar Inventory of Signs and Symptoms Scale (BISS) and the Montgomery Åsberg Depression Rating Scale (MADRS). Our results showed a positive correlation between ADAM19 and psychosis (r = 0.595 p = 0.019); PS1 and mania (r = 0.535, p = 0.040); PS1 and depression (r = 0.567, p = 0.027) in BA9, and BACE1 with anxiety (r = 0.608, p = 0.03) in the hippocampus.Our preliminary findings suggest region-specific alterations in NRG1 cleavage in SCZ and BPD patients. These changes may be associated with specific symptoms in these psychiatric disorders
    corecore