115 research outputs found

    Odin–OSIRIS detection of the Chelyabinsk meteor

    Get PDF
    On 15 February 2013 an 11 000 ton meteor entered Earth's atmosphere southeast of Chelyabinsk, creating a large fireball at 23 km altitude. The resulting stratospheric aerosol loading was detected by the Ozone Mapping and Profiler Suite (OMPS) in a high-altitude polar belt. This work confirms the presence and lifetime of the stratospheric debris using the Optical Spectrograph and InfraRed Imaging System (OSIRIS) onboard the Odin satellite. Although OSIRIS coverage begins in mid-March, the measurements show a belt of enhanced scattering near 35 km altitude between 50° N and 70° N. Initially, enhancements show increased scattering of up to 15% over the background conditions, decaying in intensity and dropping in altitude until they are indistinguishable from background conditions by mid-May. An inversion is also attempted using the standard OSIRIS processing algorithm to determine the extinction in the meteoric debris

    Odin-OSIRIS stratospheric aerosol data product and SAGE III intercomparison

    Get PDF
    The scattered sunlight measurements made by the Optical Spectrograph and InfraRed Imaging System (OSIRIS) on the Odin spacecraft are used to retrieve vertical profiles of stratospheric aerosol extinction at 750 nm. The recently released OSIRIS Version 5 data product contains the first publicly released stratospheric aerosol extinction retrievals, and these are now available for the entire Odin mission, which extends from the present day back to launch in 2001. A proof-of-concept study for the retrieval of stratospheric aerosol extinction from limb scatter measurements was previously published and the Version 5 data product retrievals are based on this work, but incorporate several important improvements to the algorithm. One of the primary changes is the use of a new retrieval vector that greatly improves the sensitivity to aerosol scattering by incorporating a forward modeled calculation of the radiance from a Rayleigh atmosphere. Additional improvements include a coupled retrieval of the effective albedo, a new method for normalization of the retrieval vector to improve signal-to-noise, and the use of an initial guess that is representative of very low background aerosol loading conditions, which allows for maximal retrieval range. Furthermore, the Version 5 data set is compared to Stratospheric Aerosol and Gas Experiment (SAGE) III 755 nm extinction profiles during the almost four years of mission overlap from 2002 to late 2005. The vertical structure in coincident profile measurements is well correlated and the statistics on a relatively large set of tight coincident measurements show agreement between the measurements from the two instruments to within approximately 10% throughout the 15 to 25 km altitude range, which covers the bulk of the stratospheric aerosol layer for the mid and high latitude cases studied here

    Stratospheric ozone trends and variability as seen by SCIAMACHY from 2002 to 2012

    Get PDF
    Vertical profiles of the rate of linear change (trend) in the altitude range 15–50 km are determined from decadal O<sub>3</sub> time series obtained from SCIAMACHY<sup>1</sup>/ENVISAT<sup>2</sup> measurements in limb-viewing geometry. The trends are calculated by using a multivariate linear regression. Seasonal variations, the quasi-biennial oscillation, signatures of the solar cycle and the El Niño–Southern Oscillation are accounted for in the regression. The time range of trend calculation is August 2002–April 2012. A focus for analysis are the zonal bands of 20° N–20° S (tropics), 60–50° N, and 50–60° S (midlatitudes). In the tropics, positive trends of up to 5% per decade between 20 and 30 km and negative trends of up to 10% per decade between 30 and 38 km are identified. Positive O<sub>3</sub> trends of around 5% per decade are found in the upper stratosphere in the tropics and at midlatitudes. Comparisons between SCIAMACHY and EOS MLS<sup>3</sup> show reasonable agreement both in the tropics and at midlatitudes for most altitudes. In the tropics, measurements from OSIRIS<sup>4</sup>/Odin and SHADOZ<sup>5</sup> are also analysed. These yield rates of linear change of O<sub>3</sub> similar to those from SCIAMACHY. However, the trends from SCIAMACHY near 34 km in the tropics are larger than MLS and OSIRIS by a factor of around two. <br><br> <br><br> <sup>1</sup> SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY <sup>2</sup> European environmental research satellite <sup>3</sup> Earth Observing System (EOS) Microwave Limb Sounder (MLS) <sup>4</sup> Optical Spectrograph and InfraRed Imager System <sup>5</sup> Southern Hemisphere ADditional OZonesonde

    Validation of ACE and OSIRIS Ozone and NO2 Measurements Using Ground Based Instruments at 80° N

    Get PDF
    The Optical Spectrograph and Infra-Red Imager System (OSIRIS) and the Atmospheric Chemistry Experiment (ACE) have been taking measurements from space since 2001 and 2003, respectively. This paper presents intercomparisons between ozone and NO2 measured by the ACE and OSIRIS satellite instruments and by ground-based instruments at the Polar Environment Atmospheric Research Laboratory (PEARL), which is located at Eureka, Canada (80◦ N, 86◦ W) and is operated by the Canadian Network for the Detection of Atmospheric Change (CANDAC). The ground-based instruments included in this study are four zenith-sky differential optical absorption spectroscopy (DOAS) instruments, one Bruker Fourier transform infrared spectrometer (FTIR) and four Brewer spectrophotometers. Ozone total columns measured by the DOAS instruments were retrieved using new Network for the Detection of Atmospheric Composition Change (NDACC) guidelines and agree to within 3.2 %. The DOAS ozone columns agree with the Brewer spectrophotometers with mean relative differences that are smaller than 1.5 %. This suggests that for these instruments the new NDACC data guidelines were successful in producing a homogenous and accurate ozone dataset at 80◦ N. Satellite 14–52km ozone and 17–40km NO2 partial columns within 500km of PEARL were calculated for ACE-FTS Version 2.2 (v2.2) plus updates, ACE-FTS v3.0, ACE-MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) v1.2 and OSIRIS SaskMART v5.0x ozone and Optimal Estimation v3.0 NO2 data products. The new ACE-FTS v3.0 and the validated ACE-FTS v2.2 partial columns are nearly identical, with mean relative differences of 0.0±0.2% and −0.2±0.1% for v2.2 minus v3.0 ozone and NO2, respectively. Ozone columns were constructed from 14–52km satellite and 0–14km ozonesonde partial columns and compared with the ground-based total column measurements. The satellite-plus-sonde measurements agree with the ground-based ozone total columns with mean relative differences of 0.1–7.3 %. For NO2, partial columns from 17km upward were scaled to noon using a photo-chemical model. Mean relative differences between OSIRIS, ACE-FTS and ground-based NO2 measurements do not exceed 20 %. ACE-MAESTRO measures more NO2 than the other instruments, with mean relative differences of 25–52 %. Seasonal variation in the differences between NO2 partial columns is observed, suggesting that there are systematic errors in the measurements and/or the photochemical model corrections. For ozone spring-time measurements, additional coincidence criteria based on stratospheric temperature and the location of the polar vortex were found to improve agreement between some of the instruments. For ACE-FTS v2.2 minus Bruker FTIR, the 2007–2009 spring-time mean relative difference improved from−5.0±0.4%to−3.1±0.8% with the dynamical selection criteria. This was the largest improvement, likely because both instruments measure direct sunlight and therefore have well-characterized lines-of-sight compared with scattered sunlight measurements. For NO2, the addition of a±1◦ latitude coincidence criterion improved spring-time intercomparison results, likely due to the sharp latitudinal gradient of NO2 during polar sunrise. The differences between satellite and ground-based measurements do not show any obvious trends over the missions, indicating that both the ACE and OSIRIS instruments continue to perform well

    Characterizing sampling biases in the trace gas climatologies of the SPARC Data Initiative

    Get PDF
    Monthly zonal mean climatologies of atmospheric measurements from satellite instruments can have biases due to the non-uniform sampling of the atmosphere by the instruments. We characterize potential sampling biases in stratospheric trace gas climatologies of the Stratospheric Processes and their Role in Climate (SPARC) Data Initiative using chemical fields from a chemistry climate model simulation and sampling patterns from 16 satellite-borne instruments. The exercise is performed for the long-lived stratospheric trace gases O3 and H2O. Monthly sample biases for O3 exceed 10% for many instruments in the high latitude stratosphere and in the upper troposphere/lower stratosphere, while annual mean sampling biases reach values of up to 20% in the same regions for some instruments. Sampling biases for H2O are generally smaller than for O3, although still notable in the upper troposphere/lower stratosphere and Southern Hemisphere high latitudes. The most important mechanism leading to monthly sampling bias is the non-uniform temporal sampling of many instruments, i.e., the fact that for many instruments, monthly means are produced from measurements which span less than the full month in question. Similarly, annual mean sampling biases are well explained by non-uniformity in the month-to-month sampling by different instruments. Non-uniform sampling in latitude and longitude are shown to also lead to non-negligible sampling biases, which are most relevant for climatologies which are otherwise free of sampling biases due to non-uniform temporal sampling

    Drift Corrected Trends and Periodic Variations in MIPAS IMK/IAA Ozone Measurements

    Get PDF
    Drifts, trends and periodic variations were calculated from monthly zonally averaged ozone profiles. The ozone profiles were derived from level-1b data of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) by means of the scientific level-2 processor run by the Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research (IMK). All trend and drift analyses were performed using a multilinear parametric trend model which includes a linear term, several harmonics with period lengths from 3 to 24 months and the quasi-biennial oscillation (QBO). Drifts at 2-sigma significance level were mainly negative for ozone relative to Aura MLS and Odin OSIRIS and negative or near zero for most of the comparisons to lidar measurements. Lidar stations used here include those at Hohenpeissenberg (47.8° N, 11.0 ° E), Lauder (45.0 ° S, 169.7 ° E), Mauna Loa (19.5 ° N, 155.6 ° W), Observatoire Haute Provence (43.9 ° N, 5.7 ° E) and Table Mountain (34.4 ° N, 117.7 ° W). Drifts against the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) were found to be mostly insignificant. The assessed MIPAS ozone trends cover the time period of July 2002 to April 2012 and range from -0.56 ppmv decade-1 to +0.48 ppmv decade-1 (-0.52 ppmv decade-1 to +0.47 ppmv decade-1 when displayed on pressure coordinates) depending on altitude/ pressure and latitude. From the empirical drift analyses we conclude that the real ozone trends might be slightly more positive/ less negative than those calculated from the MIPAS data, by conceding the possibility of MIPAS having a very small (approximately within -0.3 ppmv decade-1 negative drift for ozone. This leads to drift-corrected trends of -0.41 ppmv decade-1 to +0.55 ppmv decade-1 (-0.38 ppmv decade-1 to +0.53 ppmv decade-1 when displayed on pressure coordinates) for the time period covered by MIPAS Envisat measurements, with very few negative and large areas of positive trends at mid-latitudes for both hemispheres around and above 30 km (similar to 10 hPa). Negative trends are found in the tropics around 25 and 35 km (similar to 25 and 5 hPa), while an area of positive trends is located right above the tropical tropopause. These findings are in good agreement with the recent literature. Differences of the trends compared with the recent literature could be explained by a possible shift of the subtropical mixing barriers. Results for the altitude-latitude distribution of amplitudes of the quasi-biennial, annual and the semi-annual oscillation are overall in very good agreement with recent findings

    Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery

    Get PDF
    Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer–Dobson circulation (BDC), forming a protective "ozone layer" around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60° S and 60° N outside the polar regions (60–90°). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60° S and 60° N has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60° S and 60° N. We find that total column ozone between 60° S and 60° N appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established

    Using FTIR measurements of stratospheric composition to identify midlatitude polar vortex intrusions over Toronto

    Get PDF
    Publisher's Version/PDFUsing 11 years of trace gas measurements made at the University of Toronto Atmospheric Observatory (43.66&deg;N, 79.40&deg;W) and Environment Canada&rsquo;s Centre for Atmospheric Research Experiments (44.23&deg;N, 79.78&deg;W), along with derived meteorological products, we identify a number of polar intrusion events, which are excursions of the polar vortex or filaments from the polar vortex extending down to midlatitudes. These events are characterized by enhanced stratospheric columns (12&ndash;50 km) of hydrogen fluoride (HF), by diminished stratospheric columns of nitrous oxide (N2O), and by a scaled potential vorticity above 1.2 &times;10-4s-1.The events comprise 16% of winter/spring (November to April inclusive) Fourier transform infrared (FTIR) spectroscopic measurements from January 2002 to March 2013, and we find at least two events per year. The events are corroborated by Mod&egrave;le Isentrope du transport M&eacute;so-&eacute;chelle de l&rsquo;Ozone Stratosph&eacute;rique par Advection, Modern-Era Retrospective Analysis for Research and Applications potential vorticity maps, and Global Modeling Initiative N2O maps. During polar intrusion events, the stratospheric ozone (O3) columns over Toronto are usually greater than when there is no event. Our O3 measurements agree with the Optical Spectrograph and Infrared Imaging System satellite instrument and are further verified with the Earth Probe Total Ozone Mapping Spectrometer and Ozone Monitoring Instrument satellite observations. We find six cases out of 53 for which chemical O3 depletion within the polar vortex led to a reduction in stratospheric O3 columns over Toronto. We have thus identified a dynamical cause for most of the winter/spring variability of stratospheric trace gas columns observed at our midlatitude site. While there have been a number of prior polar intrusion studies, this is the first study to report in the context of 11 years of ground-based FTIR column measurements, providing insight into the frequency of midlatitude polar vortex intrusions and observations of upper stratospheric (25&ndash;50 km) intrusions. It is also the first to present HF measurements during multiple polar intrusions, which provided an excellent tracer for their identification.</p

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
    corecore